Optimizing Hyperparameters of YOLO to Improve Performance of Brain Tumor Detection in MRI Images

超参数 计算机科学 人工智能 模式识别(心理学) 计算机视觉
作者
Dwi Wahyudi,Indah Soesanti,Hanung Adi Nugroho
标识
DOI:10.1109/icoiact59844.2023.10455813
摘要

Brain tumor is one of the disorders of the central nervous system (CNS) caused by the growth of abnormal tissue in the brain. Magnetic Resonance Imaging (MRI) is the most popular electronic modality used by doctors to diagnose brain tumors. Early detection of brain tumors based on MRI images can help doctors provide the right treatment, thus increasing the patient's chances of recovery. Recently, deep learning algorithms, especially CNN, have been widely used in the medical field and show good performance for medical images analysis. In this study, we propose the detection of brain tumor lesions on MRI images using YOLOv7. This study uses a 2D MRI images dataset extracted from BraTS2020 in the axial plane of the T1CE sequence. To improve model performance, we try to find the best set of hyperparameters using three methods, including random search (RS), genetic algorithm (GA), and Bayesian optimization (BO). The results show that Bayesian optimization is the most efficient method for finding the optimal hyperparameter combination, where BO is 1.5 times faster than RS and 4 times faster than GA. By using the best hyperparameter obtained, the performance of YOLOv7 improved by 8% compared to the original model, achieving the best performance at 0.916 mAP. These results also outperform previous research using the same dataset. The research results indicate that hyperparameter optimization can enhance the model's performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助嘎嘎板正采纳,获得10
1秒前
小月月完成签到,获得积分10
1秒前
山河发布了新的文献求助10
3秒前
4秒前
科研通AI5应助ZRH采纳,获得10
4秒前
Binbin发布了新的文献求助10
5秒前
JamesPei应助阿九采纳,获得10
5秒前
ZGH完成签到,获得积分10
6秒前
聪聪great完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
Xie完成签到,获得积分10
8秒前
user001完成签到,获得积分10
8秒前
air-yi完成签到,获得积分10
9秒前
哇哈哈哈哈应助lwl666采纳,获得10
10秒前
万能图书馆应助张明灿采纳,获得10
10秒前
你怎么这么可爱啊完成签到 ,获得积分10
10秒前
dongqing12311完成签到,获得积分10
10秒前
852应助hrrypeet采纳,获得20
11秒前
圆彰七大发布了新的文献求助10
11秒前
12秒前
12秒前
马旭辉发布了新的文献求助10
12秒前
郭囯完成签到,获得积分10
12秒前
12秒前
彭于晏应助犀牛采纳,获得10
13秒前
科研通AI5应助小皮猪采纳,获得10
13秒前
NexusExplorer应助callmefather采纳,获得10
14秒前
14秒前
甜甜芾完成签到,获得积分10
14秒前
745789完成签到,获得积分10
15秒前
FashionBoy应助江恒华采纳,获得10
15秒前
15秒前
gao完成签到 ,获得积分10
15秒前
16秒前
16秒前
科研爱好者完成签到,获得积分10
16秒前
Singularity应助Hhhhhhhhhh采纳,获得10
16秒前
科研通AI5应助山河采纳,获得10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842025
求助须知:如何正确求助?哪些是违规求助? 3384185
关于积分的说明 10533034
捐赠科研通 3104519
什么是DOI,文献DOI怎么找? 1709644
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953