Domain adaptive remote sensing image semantic segmentation with prototype guidance

计算机科学 领域(数学分析) 人工智能 计算机视觉 分割 图像(数学) 域适应 图像分割 数学 分类器(UML) 数学分析
作者
Wankang Zeng,Ming Cheng,Zhimin Yuan,Wei Dai,Youming Wu,Weiquan Liu,Cheng Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:580: 127484-127484 被引量:1
标识
DOI:10.1016/j.neucom.2024.127484
摘要

Current unsupervised domain adaptation (UDA) techniques in semantic segmentation effectively decrease the domain discrepancy between the labeled source domain and unlabeled target domain, thereby enhancing the model's pixel-wise discriminative capability for target domain data. However, in remote sensing images (RSIs), our study uncovers that these approaches perform poorly in the presence of class distribution inconsistencies between the source and target domains. In this work, we propose a one-stage mean teacher framework with a novel auxiliary prototype classifier, named MTA, to address this issue. Specifically, the teacher model assigns pseudo labels at pixel level for target samples and captures knowledge from the student model via exponential moving average (EMA). With labeled source samples and target samples that have pseudo labels, the student model can alleviate the divergence between the source and target domains. In addition, the auxiliary prototype classifier (APC) reduces the performance degradation in the parametric softmax classifier of the student model caused by class distribution divergence. We also propose a prototype computation scheme to obtain each class prototype in the APC. Specifically, we build a memory bank for each class of the two domains to store feature embeddings dynamically. Then, we compute the class prototype by applying the clustering algorithm on memory banks corresponding to the class. Meanwhile, the APC reduces the intra-class domain discrepancy by optimizing the cross-entropy loss, which brings each class feature distribution of the two domains closer to the class prototype. The experimental results on RSIs UDA semantic segmentation tasks show the superiority of our approach over comparative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美梦成真福禄寿完成签到 ,获得积分10
1秒前
万能图书馆应助幻心采纳,获得10
1秒前
叶子完成签到 ,获得积分10
1秒前
共享精神应助naturehome采纳,获得10
1秒前
称心乐枫完成签到,获得积分10
2秒前
研友_84mPRL发布了新的文献求助10
2秒前
辛勤安梦完成签到,获得积分10
2秒前
健忘惜海完成签到,获得积分10
2秒前
2秒前
JIN发布了新的文献求助10
2秒前
2秒前
atonnng发布了新的文献求助30
2秒前
kk99123应助毕业即胜利采纳,获得10
3秒前
wlscj应助jjj采纳,获得20
3秒前
淡定草丛完成签到 ,获得积分10
3秒前
ccc完成签到 ,获得积分10
3秒前
繁荣的安双完成签到,获得积分10
4秒前
4秒前
小唐完成签到,获得积分10
4秒前
snowpie完成签到 ,获得积分10
4秒前
Tim完成签到,获得积分10
5秒前
6秒前
tanx发布了新的文献求助10
6秒前
SciGPT应助海洋球采纳,获得10
6秒前
邱晓文完成签到 ,获得积分20
6秒前
6秒前
7秒前
LYH发布了新的文献求助10
7秒前
灿烂千阳完成签到,获得积分10
7秒前
快乐的素完成签到 ,获得积分10
7秒前
8秒前
viviji完成签到,获得积分10
8秒前
健壮道天应助bule采纳,获得10
8秒前
8秒前
真实的一鸣完成签到,获得积分10
8秒前
JJBOND完成签到,获得积分10
8秒前
9秒前
2620完成签到,获得积分10
9秒前
昏睡的慕青完成签到,获得积分10
9秒前
什么什么哇偶完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439