Domain adaptive remote sensing image semantic segmentation with prototype guidance

计算机科学 领域(数学分析) 人工智能 计算机视觉 分割 图像(数学) 域适应 图像分割 数学 分类器(UML) 数学分析
作者
Wankang Zeng,Ming Cheng,Zhimin Yuan,Wei Dai,Youming Wu,Weiquan Liu,Cheng Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:580: 127484-127484 被引量:1
标识
DOI:10.1016/j.neucom.2024.127484
摘要

Current unsupervised domain adaptation (UDA) techniques in semantic segmentation effectively decrease the domain discrepancy between the labeled source domain and unlabeled target domain, thereby enhancing the model's pixel-wise discriminative capability for target domain data. However, in remote sensing images (RSIs), our study uncovers that these approaches perform poorly in the presence of class distribution inconsistencies between the source and target domains. In this work, we propose a one-stage mean teacher framework with a novel auxiliary prototype classifier, named MTA, to address this issue. Specifically, the teacher model assigns pseudo labels at pixel level for target samples and captures knowledge from the student model via exponential moving average (EMA). With labeled source samples and target samples that have pseudo labels, the student model can alleviate the divergence between the source and target domains. In addition, the auxiliary prototype classifier (APC) reduces the performance degradation in the parametric softmax classifier of the student model caused by class distribution divergence. We also propose a prototype computation scheme to obtain each class prototype in the APC. Specifically, we build a memory bank for each class of the two domains to store feature embeddings dynamically. Then, we compute the class prototype by applying the clustering algorithm on memory banks corresponding to the class. Meanwhile, the APC reduces the intra-class domain discrepancy by optimizing the cross-entropy loss, which brings each class feature distribution of the two domains closer to the class prototype. The experimental results on RSIs UDA semantic segmentation tasks show the superiority of our approach over comparative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫菜完成签到,获得积分10
刚刚
simon发布了新的文献求助10
刚刚
1秒前
六个核桃完成签到,获得积分10
1秒前
had完成签到,获得积分10
1秒前
Elan发布了新的文献求助10
2秒前
投必快业必毕完成签到,获得积分10
2秒前
气泡发布了新的文献求助10
2秒前
Leo应助清欢采纳,获得10
3秒前
阿屁屁猪完成签到,获得积分10
3秒前
enen完成签到,获得积分10
3秒前
F123发布了新的文献求助10
4秒前
4秒前
fan完成签到,获得积分10
4秒前
4秒前
默默诗云完成签到,获得积分20
4秒前
u2u2发布了新的文献求助10
5秒前
嘎嘣脆完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
迅速冬天完成签到,获得积分10
6秒前
打工仔完成签到,获得积分20
6秒前
领导范儿应助土拨鼠采纳,获得10
6秒前
AC1号应助Ziyi_Xu采纳,获得200
7秒前
打打应助XUAN采纳,获得10
7秒前
ALOHA完成签到,获得积分10
7秒前
无所谓啊完成签到,获得积分10
7秒前
深情安青应助mumu采纳,获得10
7秒前
爱你一万年完成签到,获得积分10
8秒前
8秒前
Yubler完成签到,获得积分10
8秒前
8秒前
WiLDPiG433完成签到,获得积分10
8秒前
自然幻竹完成签到,获得积分10
9秒前
蓝莓发布了新的文献求助10
9秒前
两栖玩家发布了新的文献求助10
9秒前
9秒前
9秒前
yo发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427401
求助须知:如何正确求助?哪些是违规求助? 4540937
关于积分的说明 14175101
捐赠科研通 4458915
什么是DOI,文献DOI怎么找? 2445138
邀请新用户注册赠送积分活动 1436275
关于科研通互助平台的介绍 1413758