亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain adaptive remote sensing image semantic segmentation with prototype guidance

计算机科学 领域(数学分析) 人工智能 计算机视觉 分割 图像(数学) 域适应 图像分割 数学 分类器(UML) 数学分析
作者
Wankang Zeng,Ming Cheng,Zhimin Yuan,Wei Dai,Youming Wu,Weiquan Liu,Cheng Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:580: 127484-127484 被引量:1
标识
DOI:10.1016/j.neucom.2024.127484
摘要

Current unsupervised domain adaptation (UDA) techniques in semantic segmentation effectively decrease the domain discrepancy between the labeled source domain and unlabeled target domain, thereby enhancing the model's pixel-wise discriminative capability for target domain data. However, in remote sensing images (RSIs), our study uncovers that these approaches perform poorly in the presence of class distribution inconsistencies between the source and target domains. In this work, we propose a one-stage mean teacher framework with a novel auxiliary prototype classifier, named MTA, to address this issue. Specifically, the teacher model assigns pseudo labels at pixel level for target samples and captures knowledge from the student model via exponential moving average (EMA). With labeled source samples and target samples that have pseudo labels, the student model can alleviate the divergence between the source and target domains. In addition, the auxiliary prototype classifier (APC) reduces the performance degradation in the parametric softmax classifier of the student model caused by class distribution divergence. We also propose a prototype computation scheme to obtain each class prototype in the APC. Specifically, we build a memory bank for each class of the two domains to store feature embeddings dynamically. Then, we compute the class prototype by applying the clustering algorithm on memory banks corresponding to the class. Meanwhile, the APC reduces the intra-class domain discrepancy by optimizing the cross-entropy loss, which brings each class feature distribution of the two domains closer to the class prototype. The experimental results on RSIs UDA semantic segmentation tasks show the superiority of our approach over comparative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独如曼完成签到 ,获得积分10
刚刚
天天快乐应助大力蚂蚁采纳,获得10
刚刚
1秒前
Baili应助456采纳,获得10
6秒前
韦谷兰发布了新的文献求助10
6秒前
想上985完成签到,获得积分10
8秒前
10秒前
CAOHOU举报wenxiang求助涉嫌违规
10秒前
yx_cheng应助xu采纳,获得10
17秒前
18秒前
LUCKY完成签到 ,获得积分10
20秒前
田様应助Doctor采纳,获得10
22秒前
韦谷兰完成签到,获得积分10
22秒前
Ava应助妄自采纳,获得10
29秒前
喜悦宫苴完成签到,获得积分10
30秒前
希望天下0贩的0应助wyp采纳,获得10
31秒前
可爱的函函应助行素采纳,获得10
35秒前
36秒前
SCI的李完成签到 ,获得积分10
37秒前
Micheal完成签到 ,获得积分10
37秒前
37秒前
依惜发布了新的文献求助10
37秒前
合一海盗完成签到,获得积分10
38秒前
40秒前
脑洞疼应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
Profeto应助科研通管家采纳,获得10
41秒前
41秒前
41秒前
Akim应助科研通管家采纳,获得10
41秒前
dong应助科研通管家采纳,获得30
41秒前
Vincey完成签到,获得积分10
41秒前
wyp发布了新的文献求助10
42秒前
44秒前
ZhiningZ完成签到 ,获得积分10
44秒前
47秒前
妄自发布了新的文献求助10
50秒前
行素发布了新的文献求助10
50秒前
52秒前
liyizhe完成签到 ,获得积分10
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994886
求助须知:如何正确求助?哪些是违规求助? 3535036
关于积分的说明 11267028
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762