Domain adaptive remote sensing image semantic segmentation with prototype guidance

计算机科学 领域(数学分析) 人工智能 计算机视觉 分割 图像(数学) 域适应 图像分割 数学 分类器(UML) 数学分析
作者
Wankang Zeng,Ming Cheng,Zhimin Yuan,Wei Dai,Youming Wu,Weiquan Liu,Cheng Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:580: 127484-127484 被引量:1
标识
DOI:10.1016/j.neucom.2024.127484
摘要

Current unsupervised domain adaptation (UDA) techniques in semantic segmentation effectively decrease the domain discrepancy between the labeled source domain and unlabeled target domain, thereby enhancing the model's pixel-wise discriminative capability for target domain data. However, in remote sensing images (RSIs), our study uncovers that these approaches perform poorly in the presence of class distribution inconsistencies between the source and target domains. In this work, we propose a one-stage mean teacher framework with a novel auxiliary prototype classifier, named MTA, to address this issue. Specifically, the teacher model assigns pseudo labels at pixel level for target samples and captures knowledge from the student model via exponential moving average (EMA). With labeled source samples and target samples that have pseudo labels, the student model can alleviate the divergence between the source and target domains. In addition, the auxiliary prototype classifier (APC) reduces the performance degradation in the parametric softmax classifier of the student model caused by class distribution divergence. We also propose a prototype computation scheme to obtain each class prototype in the APC. Specifically, we build a memory bank for each class of the two domains to store feature embeddings dynamically. Then, we compute the class prototype by applying the clustering algorithm on memory banks corresponding to the class. Meanwhile, the APC reduces the intra-class domain discrepancy by optimizing the cross-entropy loss, which brings each class feature distribution of the two domains closer to the class prototype. The experimental results on RSIs UDA semantic segmentation tasks show the superiority of our approach over comparative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jiaminzhao发布了新的文献求助10
1秒前
1秒前
传奇3应助lixxx采纳,获得10
2秒前
鸣笛应助左丘以云采纳,获得20
3秒前
3秒前
完美春天发布了新的文献求助10
4秒前
4秒前
小花妹妹发布了新的文献求助10
4秒前
sanages发布了新的文献求助10
5秒前
5秒前
My完成签到,获得积分10
6秒前
郦稀完成签到,获得积分10
6秒前
鸭梨发布了新的文献求助10
6秒前
其11发布了新的文献求助10
7秒前
在捂汗发布了新的文献求助10
8秒前
大笨蛋完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
9秒前
青蛙十字绣00700完成签到,获得积分10
9秒前
Jasper应助执着过客采纳,获得10
10秒前
sanages完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
帅气抽屉完成签到,获得积分10
11秒前
12秒前
now发布了新的文献求助10
13秒前
Hello应助辛勤夜柳采纳,获得10
13秒前
13秒前
13秒前
ycyang发布了新的文献求助10
14秒前
14秒前
上善若水完成签到 ,获得积分10
14秒前
lixxx发布了新的文献求助10
14秒前
urassaya给urassaya的求助进行了留言
15秒前
VANGOGH完成签到,获得积分20
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577232
求助须知:如何正确求助?哪些是违规求助? 3996368
关于积分的说明 12372376
捐赠科研通 3670475
什么是DOI,文献DOI怎么找? 2022811
邀请新用户注册赠送积分活动 1056944
科研通“疑难数据库(出版商)”最低求助积分说明 944026