亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast Adaptation Trajectory Prediction Method Based on Online Multisource Transfer Learning

弹道 学习迁移 适应(眼睛) 计算机科学 人工智能 机器学习 心理学 物理 天文 神经科学
作者
Biao Yang,Jun Zhu,Zhitao Yu,Fucheng Fan,Xiaofeng Liu,Rongrong Ni
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tase.2024.3362980
摘要

Conventional deep learning-based trajectory prediction methods always adopt offline training based on trajectory data collected in known scenes. Despite its high prediction accuracy, it is unable to process trajectory data acquired in real-time, making it non-trivial to adapt to unknown scenes. To mitigate the above problem, an online multi-source transfer learning-based pedestrian trajectory predictor, dubbed OMTL-PTP, is proposed to achieve fast adaptation of trajectory prediction. OMTL-PTP resorts to online transfer learning to transfer trajectory knowledge from multiple source domains to the target domain, enabling the model to learn from the new scene and continuously improve its trajectory prediction ability. Concretely, we propose several base learners with external memory modules to preserve source domain trajectory knowledge for online knowledge transfer. A multi-hop attention mechanism is introduced in each learner to handle the future uncertainty of generated trajectories. To fully utilize the knowledge from multiple source domains, OMTL-PTP leverages ensemble learning to transfer knowledge from multiple base learners in the source domains to the online learner and fine-tunes the online learner in the target domain. Specifically, all base learners are combined to update the online learner, improving its ability to process future arriving samples and adapt to unknown scenes quickly. Qualitative and quantitative evaluations on ETH/UCY indicate the effectiveness of OMTL-PTP in online learning, which is beneficial for deploying trajectory prediction methods on intelligent edge devices. The code will be released at https://github.com/zjrcczu/OMTL-PTP after acceptance. Note to Practitioners —This paper is motivated by the challenge of online sustained trajectory prediction for unmanned autonomous agents, but it also applies to other trajectory prediction tasks, such as intelligent monitoring. Existing approaches always collect trajectory data from different scenes for training, making the model generalize to other scenarios. However, they may suffer from performance degradation since they cannot learn trajectory knowledge from unknown scenes. This paper suggests a new approach by transferring trajectory knowledge from known scenes to unknown scenes and gradually learning from unknown scenes, inspired by online transfer learning. In this paper, we propose a trajectory predictor based on a memory network and introduce the multi-hop attention mechanism to mitigate future uncertainty of trajectory prediction. We then show how the external memory can preserve trajectory knowledge, which facilitates transferring knowledge from source domains to the target domain. Afterward, we train an online trajectory predictor based on online multi-source transfer learning, improving the generalization and adaptability of trajectory prediction models in unknown scenes and facilitating deploying trajectory prediction models in edge devices. This method also applies to other neural network-based regression tasks that require online sustained learning. In future research, we will improve the trajectory prediction performance while maintaining the online learning ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
淡淡完成签到 ,获得积分10
9秒前
slz发布了新的文献求助10
9秒前
领导范儿应助djbj2022采纳,获得10
28秒前
852应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
想不出来完成签到 ,获得积分10
41秒前
科研通AI2S应助二牛采纳,获得10
43秒前
ding应助atdawn1998采纳,获得10
52秒前
53秒前
55秒前
david发布了新的文献求助10
59秒前
布灵发布了新的文献求助10
1分钟前
不安映秋发布了新的文献求助10
1分钟前
不安映秋完成签到,获得积分10
1分钟前
david完成签到,获得积分10
1分钟前
1分钟前
老王爱学习完成签到,获得积分10
1分钟前
布灵完成签到,获得积分20
1分钟前
华仔应助时尚的飞机采纳,获得10
1分钟前
666完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
fang发布了新的文献求助10
1分钟前
atdawn1998发布了新的文献求助10
1分钟前
wuhan发布了新的文献求助10
1分钟前
信封完成签到 ,获得积分10
1分钟前
2分钟前
无花果应助atdawn1998采纳,获得10
2分钟前
Frank应助子桑南采纳,获得300
2分钟前
_ban发布了新的文献求助10
2分钟前
二牛发布了新的文献求助10
2分钟前
2分钟前
yueyangyin完成签到,获得积分10
2分钟前
atdawn1998发布了新的文献求助10
2分钟前
2分钟前
2分钟前
atdawn1998完成签到,获得积分10
2分钟前
Easypass完成签到 ,获得积分10
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142637
求助须知:如何正确求助?哪些是违规求助? 2793544
关于积分的说明 7806846
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314