已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A fault detection method for transmission line components based on synthetic dataset and improved YOLOv5

输电线路 电力传输 计算机科学 块(置换群论) 故障检测与隔离 断层(地质) 过程(计算) 模式识别(心理学) 学习迁移 实时计算 工程类 人工智能 数学 电气工程 电信 几何学 执行机构 地震学 地质学 操作系统
作者
Jie Song,Xinyan Qin,Lei Jin,Jie Zhang,Yanqi Wang,Yujie Zeng
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109852-109852 被引量:7
标识
DOI:10.1016/j.ijepes.2024.109852
摘要

To address insufficient fault images for transmission line components (TLCs) and low accuracy in fault detection using deep learning techniques, we propose a fault detection method for TLCs based on synthetic datasets and improved YOLOv5. First, we introduce a synthetic image approach that uses prior information from the inspection process of a developed flying-walking power transmission line inspection robot (FPTLIR) to generate a synthetic dataset of fault components (SDFC). Second, we propose an improved YOLOv5 network called CSH-YOLOv5 to improve the accuracy of fault detection. The CSH-YOLOv5 network incorporates the convolutional block attention module (CBAM) and the latest SimCSPSPPF module to improve the detection accuracy of the network. In addition, a statistical analysis of small objects in the SDFC is performed and the neck and head of the YOLOv5 network are optimized accordingly to detect small objects. Finally, to address the lack of fault images in the unmanned aerial vehicle (UAV) inspection dataset, we implement a two-stage transfer learning strategy using the SDFC for training. We then experimentally evaluate the performance of the CSH-YOLOv5 network on a real test dataset. The results show that the CSH-YOLOv5 network achieves a mAP@[0.5] of 98.0% and a mAP@[0.5: 0.95] of 64.6% for fault detection, representing an improvement of 7.6% and 8.1%, respectively, over the YOLOv5 network. Comparative analysis indicates that the CSH-YOLOv5 outperforms other popular object detection networks, including Faster-RCNN, YOLOX, and YOLOv7 networks. The two-stage transfer learning strategy employed significantly enhances the network's generalization ability and detection accuracy on the UAV inspection dataset. The proposed method provides a technical reference for fault detection of TLCs, which can potentially benefit the power transmission industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liang发布了新的文献求助10
刚刚
刚刚
科研通AI2S应助苏习习采纳,获得10
刚刚
雨季发布了新的文献求助10
1秒前
1秒前
传奇3应助PEI采纳,获得10
2秒前
小二郎应助是小王ya采纳,获得10
3秒前
4秒前
5秒前
6秒前
dalong完成签到,获得积分10
6秒前
深情安青应助蓝胖子采纳,获得30
6秒前
kunny关注了科研通微信公众号
7秒前
8秒前
9秒前
9秒前
烤红薯发布了新的文献求助10
12秒前
12秒前
13秒前
是小王ya发布了新的文献求助10
13秒前
zzc完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
糊涂的剑完成签到,获得积分20
16秒前
18秒前
蓝胖子发布了新的文献求助10
18秒前
糊涂的剑发布了新的文献求助10
19秒前
20秒前
20秒前
PEI发布了新的文献求助10
20秒前
21秒前
KK完成签到,获得积分10
21秒前
利子完成签到 ,获得积分10
21秒前
kunny发布了新的文献求助10
24秒前
蓝胖子发布了新的文献求助30
24秒前
24秒前
KK发布了新的文献求助30
24秒前
闪闪语雪完成签到,获得积分10
24秒前
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234329
求助须知:如何正确求助?哪些是违规求助? 2880694
关于积分的说明 8216556
捐赠科研通 2548288
什么是DOI,文献DOI怎么找? 1377655
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302