亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A fault detection method for transmission line components based on synthetic dataset and improved YOLOv5

输电线路 电力传输 计算机科学 块(置换群论) 故障检测与隔离 断层(地质) 过程(计算) 模式识别(心理学) 学习迁移 实时计算 工程类 人工智能 数学 电气工程 电信 操作系统 地质学 地震学 执行机构 几何学
作者
Jie Song,Xinyan Qin,Lei Jin,Jie Zhang,Yanqi Wang,Yujie Zeng
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109852-109852 被引量:11
标识
DOI:10.1016/j.ijepes.2024.109852
摘要

To address insufficient fault images for transmission line components (TLCs) and low accuracy in fault detection using deep learning techniques, we propose a fault detection method for TLCs based on synthetic datasets and improved YOLOv5. First, we introduce a synthetic image approach that uses prior information from the inspection process of a developed flying-walking power transmission line inspection robot (FPTLIR) to generate a synthetic dataset of fault components (SDFC). Second, we propose an improved YOLOv5 network called CSH-YOLOv5 to improve the accuracy of fault detection. The CSH-YOLOv5 network incorporates the convolutional block attention module (CBAM) and the latest SimCSPSPPF module to improve the detection accuracy of the network. In addition, a statistical analysis of small objects in the SDFC is performed and the neck and head of the YOLOv5 network are optimized accordingly to detect small objects. Finally, to address the lack of fault images in the unmanned aerial vehicle (UAV) inspection dataset, we implement a two-stage transfer learning strategy using the SDFC for training. We then experimentally evaluate the performance of the CSH-YOLOv5 network on a real test dataset. The results show that the CSH-YOLOv5 network achieves a mAP@[0.5] of 98.0% and a mAP@[0.5: 0.95] of 64.6% for fault detection, representing an improvement of 7.6% and 8.1%, respectively, over the YOLOv5 network. Comparative analysis indicates that the CSH-YOLOv5 outperforms other popular object detection networks, including Faster-RCNN, YOLOX, and YOLOv7 networks. The two-stage transfer learning strategy employed significantly enhances the network's generalization ability and detection accuracy on the UAV inspection dataset. The proposed method provides a technical reference for fault detection of TLCs, which can potentially benefit the power transmission industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dr_zhangshiyu发布了新的文献求助10
刚刚
Elthrai完成签到 ,获得积分10
6秒前
wujiwuhui完成签到 ,获得积分10
13秒前
栖枝完成签到 ,获得积分10
17秒前
彭于晏应助山与采纳,获得10
18秒前
爱学习的YY完成签到 ,获得积分10
20秒前
笨笨店员完成签到,获得积分10
21秒前
drwzm完成签到 ,获得积分10
21秒前
猪猪猪完成签到,获得积分10
28秒前
英俊的铭应助ZHEN采纳,获得10
33秒前
ceeray23发布了新的文献求助20
39秒前
SciGPT应助猪猪猪采纳,获得10
40秒前
40秒前
徐志豪完成签到,获得积分20
42秒前
柠檬完成签到,获得积分10
43秒前
西柚发布了新的文献求助10
44秒前
44秒前
浮游应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
丘比特应助科研通管家采纳,获得10
45秒前
852应助激昂的幻梦采纳,获得10
53秒前
Mr完成签到 ,获得积分10
53秒前
Wang_miao完成签到 ,获得积分10
57秒前
1分钟前
Rich_WH发布了新的文献求助10
1分钟前
烟花应助wang采纳,获得10
1分钟前
linxi完成签到,获得积分10
1分钟前
Rich_WH完成签到,获得积分10
1分钟前
激昂的幻梦完成签到,获得积分10
1分钟前
淡淡一德完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
胡茶茶完成签到 ,获得积分10
1分钟前
生信小菜鸟完成签到 ,获得积分10
1分钟前
1分钟前
菠萝吹雪应助zoe采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463125
求助须知:如何正确求助?哪些是违规求助? 4567919
关于积分的说明 14312042
捐赠科研通 4493786
什么是DOI,文献DOI怎么找? 2461874
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426069