A fault detection method for transmission line components based on synthetic dataset and improved YOLOv5

输电线路 电力传输 计算机科学 块(置换群论) 故障检测与隔离 断层(地质) 过程(计算) 模式识别(心理学) 学习迁移 实时计算 工程类 人工智能 数学 电气工程 电信 几何学 执行机构 地震学 地质学 操作系统
作者
Jie Song,Xinyan Qin,Lei Jin,Jie Zhang,Yanqi Wang,Yujie Zeng
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:157: 109852-109852 被引量:11
标识
DOI:10.1016/j.ijepes.2024.109852
摘要

To address insufficient fault images for transmission line components (TLCs) and low accuracy in fault detection using deep learning techniques, we propose a fault detection method for TLCs based on synthetic datasets and improved YOLOv5. First, we introduce a synthetic image approach that uses prior information from the inspection process of a developed flying-walking power transmission line inspection robot (FPTLIR) to generate a synthetic dataset of fault components (SDFC). Second, we propose an improved YOLOv5 network called CSH-YOLOv5 to improve the accuracy of fault detection. The CSH-YOLOv5 network incorporates the convolutional block attention module (CBAM) and the latest SimCSPSPPF module to improve the detection accuracy of the network. In addition, a statistical analysis of small objects in the SDFC is performed and the neck and head of the YOLOv5 network are optimized accordingly to detect small objects. Finally, to address the lack of fault images in the unmanned aerial vehicle (UAV) inspection dataset, we implement a two-stage transfer learning strategy using the SDFC for training. We then experimentally evaluate the performance of the CSH-YOLOv5 network on a real test dataset. The results show that the CSH-YOLOv5 network achieves a mAP@[0.5] of 98.0% and a mAP@[0.5: 0.95] of 64.6% for fault detection, representing an improvement of 7.6% and 8.1%, respectively, over the YOLOv5 network. Comparative analysis indicates that the CSH-YOLOv5 outperforms other popular object detection networks, including Faster-RCNN, YOLOX, and YOLOv7 networks. The two-stage transfer learning strategy employed significantly enhances the network's generalization ability and detection accuracy on the UAV inspection dataset. The proposed method provides a technical reference for fault detection of TLCs, which can potentially benefit the power transmission industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冶金人完成签到,获得积分10
刚刚
刚刚
1秒前
肉肉发布了新的文献求助10
1秒前
1秒前
科目三应助王五采纳,获得10
1秒前
duizhang发布了新的文献求助10
2秒前
快乐小韩完成签到,获得积分10
2秒前
lorixu发布了新的文献求助10
2秒前
3秒前
3秒前
所所应助cannice采纳,获得10
3秒前
5秒前
zzzzza发布了新的文献求助10
6秒前
哒布6完成签到 ,获得积分10
6秒前
7秒前
日富一日完成签到,获得积分10
7秒前
顾矜应助坨坨采纳,获得10
8秒前
8秒前
刘66完成签到,获得积分10
8秒前
鲤鱼完成签到 ,获得积分10
9秒前
大力的隶发布了新的文献求助10
9秒前
高大以南完成签到,获得积分10
9秒前
9秒前
张振宇完成签到,获得积分10
9秒前
俊逸的代曼完成签到,获得积分10
9秒前
10秒前
charlene完成签到,获得积分10
10秒前
lorixu完成签到,获得积分10
10秒前
11秒前
天天快乐应助sdl采纳,获得10
11秒前
11秒前
11秒前
月明澜生完成签到,获得积分10
12秒前
爱睡午觉发布了新的文献求助10
12秒前
斯文败类应助踏实的碧空采纳,获得10
13秒前
13秒前
高大血茗完成签到,获得积分10
13秒前
大个应助刘武函采纳,获得10
14秒前
大模型应助wh采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969322
求助须知:如何正确求助?哪些是违规求助? 3514152
关于积分的说明 11172188
捐赠科研通 3249407
什么是DOI,文献DOI怎么找? 1794832
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804781