A fault detection method for transmission line components based on synthetic dataset and improved YOLOv5

输电线路 电力传输 计算机科学 块(置换群论) 故障检测与隔离 断层(地质) 过程(计算) 模式识别(心理学) 学习迁移 实时计算 工程类 人工智能 数学 电气工程 电信 操作系统 地质学 地震学 执行机构 几何学
作者
Jie Song,Xinyan Qin,Lei Jin,Jie Zhang,Yanqi Wang,Yujie Zeng
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109852-109852 被引量:11
标识
DOI:10.1016/j.ijepes.2024.109852
摘要

To address insufficient fault images for transmission line components (TLCs) and low accuracy in fault detection using deep learning techniques, we propose a fault detection method for TLCs based on synthetic datasets and improved YOLOv5. First, we introduce a synthetic image approach that uses prior information from the inspection process of a developed flying-walking power transmission line inspection robot (FPTLIR) to generate a synthetic dataset of fault components (SDFC). Second, we propose an improved YOLOv5 network called CSH-YOLOv5 to improve the accuracy of fault detection. The CSH-YOLOv5 network incorporates the convolutional block attention module (CBAM) and the latest SimCSPSPPF module to improve the detection accuracy of the network. In addition, a statistical analysis of small objects in the SDFC is performed and the neck and head of the YOLOv5 network are optimized accordingly to detect small objects. Finally, to address the lack of fault images in the unmanned aerial vehicle (UAV) inspection dataset, we implement a two-stage transfer learning strategy using the SDFC for training. We then experimentally evaluate the performance of the CSH-YOLOv5 network on a real test dataset. The results show that the CSH-YOLOv5 network achieves a mAP@[0.5] of 98.0% and a mAP@[0.5: 0.95] of 64.6% for fault detection, representing an improvement of 7.6% and 8.1%, respectively, over the YOLOv5 network. Comparative analysis indicates that the CSH-YOLOv5 outperforms other popular object detection networks, including Faster-RCNN, YOLOX, and YOLOv7 networks. The two-stage transfer learning strategy employed significantly enhances the network's generalization ability and detection accuracy on the UAV inspection dataset. The proposed method provides a technical reference for fault detection of TLCs, which can potentially benefit the power transmission industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
剋剋发布了新的文献求助10
刚刚
刚刚
友好的向日葵完成签到,获得积分10
刚刚
柏康娜完成签到,获得积分10
1秒前
2秒前
Mlwwq发布了新的文献求助10
2秒前
xuxingjie完成签到,获得积分10
2秒前
搜集达人应助ahead采纳,获得10
2秒前
多巴胺发布了新的文献求助10
2秒前
所所应助整齐的豆芽采纳,获得10
2秒前
2秒前
3秒前
Avery发布了新的文献求助10
3秒前
zyz完成签到,获得积分10
4秒前
4秒前
4秒前
寻找组织应助fun采纳,获得40
5秒前
passerby发布了新的文献求助10
5秒前
5秒前
OB发布了新的文献求助10
5秒前
5秒前
123完成签到,获得积分10
6秒前
Ava应助A_Brute采纳,获得10
6秒前
啊亮完成签到,获得积分10
6秒前
ranranran发布了新的文献求助10
6秒前
KOAS完成签到,获得积分10
6秒前
烂漫的碧萱完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
浮游应助TrDoubleE采纳,获得10
8秒前
9秒前
CodeCraft应助玄天明月采纳,获得10
9秒前
Jasper应助地球采纳,获得10
9秒前
穆思柔完成签到,获得积分10
9秒前
思源应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656