已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network

卷积(计算机科学) 卷积神经网络 计算机科学 特征提取 模式识别(心理学) 区间(图论) 人工神经网络 方位(导航) 特征(语言学) 人工智能 算法 数学 语言学 哲学 组合数学
作者
Jialong He,Chenchen Wu,Wei Luo,Chenhui Qian,Shaoyang Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:2
标识
DOI:10.1109/tim.2023.3347782
摘要

Remaining useful life (RUL) prediction of rolling bearings plays a crucial role in ensuring safe operation and maintenance decisions for equipment. However, due to the influence of monitoring location and working conditions, traditional deep learning methods are challenging to extract multi-dimensional and multiscale degradation features, decreasing the accuracy of RUL prediction. At the same time, there are uncertainties, such as noise and model parameters, which makes it difficult for RUL’s point prediction to meet maintenance requirements. A framework for bearing RUL interval estimation based on a cascaded multi-scale convolutional neural network (CMS-CNN) module is proposed. Firstly, depthwise separable convolution (DSC) and dilated causal convolution (DCC) constitute the main framework of the CMS-CNN module in the form of a cascade to realize multi-dimensional degenerate feature extraction in space and time. The convolution operation with different dilation rates is introduced into the module to achieve multi-scale feature extraction, and the convolutional block attention module (CBAM) is embedded to adaptively assign the importance of features. In addition, a staged-optimized mean-variance two-branched interval estimation output network layer is constructed to quantify the uncertainty of bearing RUL prediction results. Finally, the method is verified with two rolling bearing datasets. Experimental results show that the proposed method not only has high RUL prediction accuracy, but also accurately gives the uncertainty interval of the prediction results, which is better than some advanced prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助孙文杰采纳,获得10
刚刚
刘澳发布了新的文献求助10
1秒前
3秒前
研友_nxer7Z发布了新的文献求助10
3秒前
3秒前
jixuzhuixun完成签到,获得积分10
3秒前
HZHZHZ完成签到 ,获得积分0
4秒前
wavelet完成签到,获得积分10
6秒前
相悦发布了新的文献求助10
7秒前
7秒前
ww关注了科研通微信公众号
8秒前
调研昵称发布了新的文献求助10
11秒前
充电宝应助吹气球的金毛采纳,获得10
11秒前
wavelet发布了新的文献求助10
12秒前
皮皮完成签到 ,获得积分10
13秒前
13秒前
赘婿应助刘澳采纳,获得10
14秒前
14秒前
15秒前
2568269431完成签到 ,获得积分10
16秒前
汉堡包应助葛力采纳,获得10
17秒前
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
相悦完成签到,获得积分10
19秒前
harlind发布了新的文献求助10
20秒前
21秒前
几米杨发布了新的文献求助10
23秒前
24秒前
852应助跳跃野狼采纳,获得10
24秒前
完美世界应助11112采纳,获得10
24秒前
科研通AI2S应助lml采纳,获得10
24秒前
25秒前
小星星完成签到,获得积分10
25秒前
自觉香菇完成签到 ,获得积分10
28秒前
29秒前
29秒前
DreamLover完成签到,获得积分10
31秒前
小马甲应助闪电采纳,获得10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234342
求助须知:如何正确求助?哪些是违规求助? 2880713
关于积分的说明 8216705
捐赠科研通 2548304
什么是DOI,文献DOI怎么找? 1377655
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302