Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network

卷积(计算机科学) 卷积神经网络 计算机科学 特征提取 模式识别(心理学) 区间(图论) 人工神经网络 方位(导航) 特征(语言学) 人工智能 算法 数学 语言学 组合数学 哲学
作者
Jialong He,Chenchen Wu,Wei Luo,Chenhui Qian,Shaoyang Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:2
标识
DOI:10.1109/tim.2023.3347782
摘要

Remaining useful life (RUL) prediction of rolling bearings plays a crucial role in ensuring safe operation and maintenance decisions for equipment. However, due to the influence of monitoring location and working conditions, traditional deep learning methods are challenging to extract multi-dimensional and multiscale degradation features, decreasing the accuracy of RUL prediction. At the same time, there are uncertainties, such as noise and model parameters, which makes it difficult for RUL’s point prediction to meet maintenance requirements. A framework for bearing RUL interval estimation based on a cascaded multi-scale convolutional neural network (CMS-CNN) module is proposed. Firstly, depthwise separable convolution (DSC) and dilated causal convolution (DCC) constitute the main framework of the CMS-CNN module in the form of a cascade to realize multi-dimensional degenerate feature extraction in space and time. The convolution operation with different dilation rates is introduced into the module to achieve multi-scale feature extraction, and the convolutional block attention module (CBAM) is embedded to adaptively assign the importance of features. In addition, a staged-optimized mean-variance two-branched interval estimation output network layer is constructed to quantify the uncertainty of bearing RUL prediction results. Finally, the method is verified with two rolling bearing datasets. Experimental results show that the proposed method not only has high RUL prediction accuracy, but also accurately gives the uncertainty interval of the prediction results, which is better than some advanced prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后海亦应助philospipi采纳,获得20
刚刚
HiDasiy完成签到 ,获得积分10
1秒前
12024完成签到,获得积分10
2秒前
2秒前
英姑应助赢赢采纳,获得10
2秒前
3秒前
4秒前
善学以致用应助菲尔普斯采纳,获得10
4秒前
未完成完成签到,获得积分10
5秒前
lll完成签到,获得积分10
5秒前
da发布了新的文献求助10
7秒前
8秒前
DouBo完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
王番发布了新的文献求助10
11秒前
12秒前
热闹的冬天完成签到,获得积分10
13秒前
14秒前
lili发布了新的文献求助10
15秒前
15秒前
YamDaamCaa应助要吃虾饺吗采纳,获得30
17秒前
Gnar发布了新的文献求助10
17秒前
17秒前
18秒前
丘比特应助董海涛采纳,获得10
18秒前
魏高丽完成签到,获得积分10
19秒前
June发布了新的文献求助30
19秒前
CodeCraft应助voifhpg采纳,获得10
20秒前
Gnar完成签到,获得积分10
24秒前
上官若男应助迅速的海秋采纳,获得10
24秒前
慕青应助Leoniko采纳,获得10
25秒前
要吃虾饺吗完成签到,获得积分10
26秒前
27秒前
27秒前
June完成签到,获得积分20
28秒前
30秒前
lili完成签到,获得积分10
30秒前
ZiXuanCui发布了新的文献求助10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182