亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network

卷积(计算机科学) 卷积神经网络 计算机科学 特征提取 模式识别(心理学) 区间(图论) 人工神经网络 方位(导航) 特征(语言学) 人工智能 算法 数学 语言学 哲学 组合数学
作者
Jialong He,Chenchen Wu,Wei Luo,Chenhui Qian,Shaoyang Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:2
标识
DOI:10.1109/tim.2023.3347782
摘要

Remaining useful life (RUL) prediction of rolling bearings plays a crucial role in ensuring safe operation and maintenance decisions for equipment. However, due to the influence of monitoring location and working conditions, traditional deep learning methods are challenging to extract multi-dimensional and multiscale degradation features, decreasing the accuracy of RUL prediction. At the same time, there are uncertainties, such as noise and model parameters, which makes it difficult for RUL’s point prediction to meet maintenance requirements. A framework for bearing RUL interval estimation based on a cascaded multi-scale convolutional neural network (CMS-CNN) module is proposed. Firstly, depthwise separable convolution (DSC) and dilated causal convolution (DCC) constitute the main framework of the CMS-CNN module in the form of a cascade to realize multi-dimensional degenerate feature extraction in space and time. The convolution operation with different dilation rates is introduced into the module to achieve multi-scale feature extraction, and the convolutional block attention module (CBAM) is embedded to adaptively assign the importance of features. In addition, a staged-optimized mean-variance two-branched interval estimation output network layer is constructed to quantify the uncertainty of bearing RUL prediction results. Finally, the method is verified with two rolling bearing datasets. Experimental results show that the proposed method not only has high RUL prediction accuracy, but also accurately gives the uncertainty interval of the prediction results, which is better than some advanced prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
脑洞疼应助科研通管家采纳,获得10
1分钟前
猪仔5号完成签到 ,获得积分10
2分钟前
2分钟前
荆棘鸟发布了新的文献求助10
2分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
drhwang完成签到,获得积分10
4分钟前
4分钟前
笨笨亦凝发布了新的文献求助30
4分钟前
笨笨亦凝完成签到,获得积分20
4分钟前
牧沛凝完成签到 ,获得积分10
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
英姑应助科研通管家采纳,获得10
5分钟前
kakuna发布了新的文献求助40
5分钟前
5分钟前
StevenWu1发布了新的文献求助10
5分钟前
英姑应助ddd采纳,获得10
5分钟前
6分钟前
6分钟前
Orange应助黑球采纳,获得10
6分钟前
黑球完成签到,获得积分10
6分钟前
6分钟前
黑球发布了新的文献求助10
6分钟前
6分钟前
7分钟前
酷波er应助科研通管家采纳,获得10
7分钟前
Kz发布了新的文献求助10
7分钟前
研友_VZG7GZ应助Kz采纳,获得10
7分钟前
celinewu完成签到,获得积分10
7分钟前
7分钟前
7分钟前
ddd发布了新的文献求助10
8分钟前
Perry完成签到,获得积分10
8分钟前
风雪丽人完成签到,获得积分10
8分钟前
8分钟前
zsmj23完成签到 ,获得积分0
9分钟前
9分钟前
10分钟前
福同学完成签到,获得积分10
10分钟前
11分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729118
求助须知:如何正确求助?哪些是违规求助? 3274275
关于积分的说明 9984852
捐赠科研通 2989521
什么是DOI,文献DOI怎么找? 1640551
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748141