自噬
细胞凋亡
细胞生长
流式细胞术
细胞生物学
基因沉默
化学
免疫印迹
分子生物学
生物
生物化学
基因
作者
Xiujuan Qin,Huiyu Chen,Wenjia Zheng,Xiaoli Zhu,Jiarong Gao
标识
DOI:10.1016/j.cellsig.2024.111091
摘要
The study aimed to explore the impact of N6-methyladenosine (m6A) modification in circStk4 on glomerular mesangial cells (GMCs) autophagy, proliferation and apoptosis. The interactions between circStk4 and miR-133a-3p, miR-133a-3p and C1 were demonstrated through luciferase reporter assays. The circStk4 localization was analyzed using fluorescence in situ hybridization and nuclear/cytosol fractionation assays. Colorimetric assays, MeRIP-qPCR, and western blot (WB) were employed to confirm the m6A modification of circStk4 and identify the key methylation enzyme. RT-qPCR was conducted to determine the impact of METTL3 on the circStk4 RNA expression. Additionally, CCK-8, flow cytometry, transmission electron microscopy, immunofluorescence, WB and RT-qPCR were employed to investigate the effects of METTL3 or circStk4 on the proliferation, autophagy and apoptosis of GMCs. Enzyme-linked immunosorbent assay was utilized to assess the inflammatory factors. m6A modifications were found in circStk4 and METTL3 was a key methylating enzyme. Furthermore, it was observed that circStk4 competitively bound miR-133a-3p and increased C1 levels. Silencing circStk4 resulted in decreased GMCs proliferation, increased autophagy and apoptosis, and reduced inflammation levels. Additionally, METTL3 played a role in inhibiting GMCs proliferation and promoting autophagy and apoptosis by regulating the circStk4 expression. On verifying the interplay between autophagy, proliferation and apoptosis, and found that the inhibition of autophagy led to an increase in cell proliferation and a decrease in apoptosis. m6A modification of circStk4 mediated by METTL3 influenced circStk4 expression and impacted autophagy, proliferation and apoptosis in GMCs via the miR-133a-3p/C1 axis. This discovery introduces a novel therapeutic approach for CGN treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI