材料科学
神经形态工程学
纳米材料
碲
石墨烯
光电子学
光强度
突触
纳米技术
光电探测器
异质结
突触可塑性
计算机科学
化学
神经科学
人工神经网络
物理
光学
生物化学
受体
机器学习
冶金
生物
作者
Adila Rani,M. Junaid Sultan,Wanqi Ren,Atanu Bag,Ho Jin Lee,Nae‐Eung Lee,Tae Geun Kim
出处
期刊:Small
[Wiley]
日期:2024-03-13
卷期号:20 (31)
被引量:2
标识
DOI:10.1002/smll.202310013
摘要
Abstract Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSO x ) and Tellurium selenium oxide (TeSeO x )nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSO x and TeSeO x multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSO x multirope‐based transistor displays a photosensory synaptic response to UV light ( λ = 365 nm). Furthermore, the TeSeO x multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light ( λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW −1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm −2 ), potentially useful for optical neuromorphic computing.
科研通智能强力驱动
Strongly Powered by AbleSci AI