🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新

Spatial-Temporal Interval Aware Individual Future Trajectory Prediction

计算机科学 时间戳 区间(图论) 编码(内存) 弹道 循环神经网络 人工智能 人工神经网络 理论计算机科学 算法 实时计算 数学 天文 组合数学 物理
作者
Yiheng Jiang,Yongjian Yang,Yuanbo Xu,En Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (10): 5374-5387 被引量:20
标识
DOI:10.1109/tkde.2023.3332929
摘要

The past flourishing years of sequential location-based services began with the introduction of the Self-Attention Network (SAN), which quickly superseded CNN or RNN as the state-of-the-art backbone. Recent works utilize modified attention mechanisms or neural network layers to process spatial-temporal factors to realize fine-grained individual behavior pattern modeling. However, we argue these methods can be further improved due to the significant increase in the model's parameter scale or computational burden. In this paper, we first exploit two lightweight approaches, Rotary Time Aware Position Encoder (RoTAPE) and multi-head Interval Aware Attention Block (IAAB), to impel SAN by efficiently and effectively capturing spatial-temporal intervals among the user's visited locations, which require neither extra parameters nor a high computational cost. On the one hand, RoTAPE encodes the day- and hour-level timestamps into sequence representation simultaneously via a sinusoidal encoding matrix, and the corresponding time intervals can be explicitly captured by SAN. Specifically, the multi-level temporal differences are mutually independent to reflect the periodical pattern and jointly complete to measure the absolute time interval. On the other hand, IAAB, point- wise injecting the historical spatial-temporal intervals into the attention map, can promote SAN attaching importance to the spatial relations under the constraints of time conditions. Then, we design a novel MLP-based module, Spatial-Temporal Relation Memory (STR Memory), implemented with fully connected linear layers and matrix transpose operations. STR Memory, endowing the interactions inside historical intervals along different directions, can convert the historical intervals into spatial-temporal relations in future trajectories for accurate predictions. To this end, we propose an end-to-end mobility trajectory prediction framework, namely STiSAN $^+$ , employing RoTAPE, stacking multiple layers of IAAB-based encoder-decoder architecture, and coupling with STR Memory. We conducted numerous experiments on six public LBSN datasets to evaluate our proposed algorithm. From Next Location Recommendation to Multi-location Future Trajectory Prediction, our STiSAN $^+$ gains average 15.05% and 18.35% improvements against several state-of-the-art sequential models, respectively. Ablation studies demonstrate the effectiveness of RoTAPE, IAAB, and STR Memory under our framework. Moreover, we separately validate the extensibility and interpretability of RoTAPE and IAAB through non-sampled metric evaluation and visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月26日)
1#155 天才小能喵
71
840
2#152 科研小民工
43
1090
3#108 xjcy
54
540
4#84 小透明
26
580
5#76 nozero
23
530
6#74 浦肯野
35
390
7#72 SYLH
36
360
8#62 我是站长才怪
29
330
9#60 夕诙
30
300
10#54 孤檠
27
270
11#51 从容芮
23
280
12#50 shinysparrow
25
250
13#40 zho
20
200
14#40 S77
20
200
15#34 天黑不打烊
17
170
16#30 wadaxiwa
15
150
17#30 Auston_zhong
15
150
18#28 古的古的
14
140
19#27 Whim
12
150
20#22 HEIKU
11
110
21#22 QOP
11
110
22#22 mufulee
10
120
23#21 curtisness
10
110
24#21 小黑
1
200
25#20 请叫我风吹麦浪
10
100
26#20 迟大猫
10
100
27#20 枫叶
10
100
28#20 往前走别回头
10
100
29#20 suibianba
9
110
30#20 CAOHOU
10
100
31#19 36456657
9
100
32#16 cdercder
7
90
第1名:50元;第2名:30元;第3名:10元

总排名
1#2360 nozero
914
14460
2#1665 科研小民工
610
10550
3#1406 shinysparrow
646
7600
4#1306 xjcy
649
6570
5#1204 SYLH
602
6020
6#878 小透明
380
4980
7#410 毛豆
204
2060
8#389 浦肯野
176
2130
9#373 36456657
180
1930
10#332 S77
166
1660
11#331 昏睡的蟠桃
118
2130
12#268 从容芮
110
1580
13#250 CAOHOU
125
1250
14#229 劲秉
79
1500
15#218 子车茗
106
1120
16#212 我是站长才怪
104
1080
17#189 点着太阳的人
67
1220
18#184 迟大猫
92
920
19#158 cdercder
56
1020
20#156 Leon
77
790
21#155 天才小能喵
71
840
22#151 curtisness
74
770
23#144 QOP
72
720
24#142 zho
71
710
25#142 Catalina_S
69
730
26#134 whisper
67
670
27#128 Auston_zhong
64
640
28#115 suibianba
55
600
29#112 tuanheqi
14
980
30#108 史小菜
52
560
31#106 火星上的菲鹰
53
530
32#102 muxiangrong
41
610
33#100 HEIKU
50
500
34#97 灵巧高山
37
600
35#96 实验好难
46
500
36#94 一一
20
740
37#94 VDC
30
640
38#93 sakurai
42
510
39#92 研友_Z30GJ8
45
470
40#86 遇上就这样吧
39
470
41#82 8R60d8
41
410
42#80 不懈奋进
37
430
43#80 Leif
40
400
44#79 彭于彦祖
31
480
45#79 无敌最俊朗
27
520
46#78 哎嘿
38
400
47#78 hbsand
38
400
48#76 iNk
38
380
49#73 怼怼
32
410
50#72 果粒橙
36
360
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
乔乔兔完成签到,获得积分10
1秒前
所所应助ccf2025采纳,获得10
1秒前
彭于晏应助可爱安筠采纳,获得30
3秒前
光亮的灭绝完成签到,获得积分10
5秒前
6秒前
7秒前
ty心明亮完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
科研通AI5应助张顺飞采纳,获得10
10秒前
火龙果完成签到,获得积分10
10秒前
huxi完成签到,获得积分10
12秒前
希望天下0贩的0应助欣欣采纳,获得10
12秒前
13秒前
13秒前
14秒前
ZJPPPP发布了新的文献求助10
14秒前
Jxnx发布了新的文献求助10
15秒前
16秒前
16秒前
王倩完成签到 ,获得积分10
19秒前
19秒前
20秒前
ding应助科研牛马采纳,获得10
20秒前
21秒前
饼饼完成签到,获得积分10
21秒前
22秒前
22秒前
一杯月光发布了新的文献求助10
23秒前
狂野篮球发布了新的文献求助10
24秒前
科研小牛完成签到,获得积分10
25秒前
25秒前
坤坤发布了新的文献求助10
25秒前
听闻发布了新的文献求助10
26秒前
喵喵发布了新的文献求助10
26秒前
善学以致用应助阔达凡白采纳,获得10
27秒前
28秒前
欣欣发布了新的文献求助10
28秒前
nsi发布了新的文献求助10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 3000
Production Logging: Theoretical and Interpretive Elements 2700
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Continuum Thermodynamics and Material Modelling 2000
Conference Record, IAS Annual Meeting 1977 1250
British Girl Chinese Wife (New World Press, 1985) 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3622416
求助须知:如何正确求助?哪些是违规求助? 3191798
关于积分的说明 9631666
捐赠科研通 2897530
什么是DOI,文献DOI怎么找? 1589208
邀请新用户注册赠送积分活动 747781
科研通“疑难数据库(出版商)”最低求助积分说明 729407