亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature selection of ground motion intensity measures for data‐driven surrogate modeling of structures

脆弱性 特征选择 计算机科学 光谱加速度 概率逻辑 维数之咒 特征(语言学) 非参数统计 帧(网络) 峰值地面加速度 数据挖掘 人工智能 地震动 工程类 结构工程 数学 统计 电信 哲学 物理化学 语言学 化学
作者
Jia‐Yi Ding,De‐Cheng Feng
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (3): 1216-1237 被引量:9
标识
DOI:10.1002/eqe.4068
摘要

Abstract In the probabilistic seismic performance assessment of structures, intensity measures (IMs) represent seismic characteristics and variations. Traditional fragility analysis method based on the assumption of linear regression requires selecting an optimal IM as input variable. By introducing machine learning (ML) techniques, nonparametric fragility analysis theoretically allows for considering all potential IMs as inputs. Nevertheless, to reduce input dimensionality and improve training efficiency, the feature selection of IMs remains imperative. This paper proposes a method to select optimal ground motion IMs for data‐driven surrogate modeling of structures. Specifically, the elastic net algorithm is employed to select the optimal multiple IMs based on the coefficient of determination and regression coefficient, differing from the efficiency and practicality emphasized in the traditional method. Using the optimal multiple IMs as input variables, several ML techniques are employed to construct surrogate models for seismic damage assessment of structures, thereby developing fragility functions, that is, the conditional probability of exceeding a damaged state given seismic intensity. A 3‐span, 6‐storey, reinforced concrete frame is utilized to illustrate the proposed methodology. The predictive performance of all ML models with the optimal multiple IMs outperforms that of the models with the commonly used IM (e.g., peak ground acceleration, PGA ) as sole input and all candidate IMs as inputs. Additionally, the surrogate models with the optimal multiple IMs enable a more comprehensive seismic fragility modeling of structures under two or more IMs simultaneously, such as the fragility surface under spectral acceleration at 1.0s ( Sa ‐1.0s) and velocity spectrum intensity ( VSI ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oywt发布了新的文献求助10
1秒前
霸气鞯完成签到 ,获得积分10
2秒前
2秒前
lf发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
bbdd2334发布了新的文献求助10
9秒前
10秒前
14秒前
李健的小迷弟应助bbdd2334采纳,获得10
16秒前
17秒前
忧伤的风华完成签到,获得积分10
23秒前
thanhvader999完成签到,获得积分10
23秒前
小乘号子发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
小马甲应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
轻松的惜芹应助白日梦采纳,获得20
28秒前
29秒前
悦耳的沛岚完成签到,获得积分10
29秒前
32秒前
Xiaowen发布了新的文献求助10
32秒前
123发布了新的文献求助10
37秒前
学习使人头大完成签到 ,获得积分10
39秒前
jyy应助坚定灯泡采纳,获得10
41秒前
44秒前
3080完成签到 ,获得积分10
46秒前
小芭乐完成签到 ,获得积分10
47秒前
51秒前
53秒前
53秒前
sunshihaoya发布了新的文献求助10
55秒前
占那个完成签到 ,获得积分10
56秒前
cos发布了新的文献求助10
58秒前
Bond完成签到 ,获得积分10
59秒前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204482
捐赠科研通 3257320
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613