Zy1-02d Satellite Hyperspectral Remote Sensing: Spatial Scaling Analysis and Monitoring of Landscape Wetland Diversity

高光谱成像 遥感 湿地 卫星 环境科学 缩放比例 多样性(政治) 地理 生态学 工程类 数学 几何学 社会学 人类学 生物 航空航天工程
作者
Siying Cheng,Weiwei Sun,Xiaodong Yang,Gang Yang,Binjie Chen,Kai Ren,Daosheng Chen
标识
DOI:10.2139/ssrn.4671699
摘要

Monitoring and assessing wetland diversity is crucial for its accurate preservation. Hyperspectral satellites have been proven effective for detailed investigations of plant diversity in large areas. However, it's unclear if spectral diversity can represent landscape diversity or if the inversion accuracy changes with spatial scale. In this study, we utilized the support vector machine method for supervised classification of ZY1-02D hyperspectral remote sensing images in the Yellow River Estuary. Subsequently, landscape diversity indices (community richness, Shannon-Wiener index, Simpson index, and Pielou index) and spectral diversity indices (coefficient of variation, convex hull volume, and eight vegetation indices) were calculated for its coastal wetlands. We then used a random forest model to predict landscape diversity based on spectral diversity. Finally, we explored the spatial scale relationship between spectral diversity and landscape diversity. The results showed that the overall accuracy of wetland classification in the Yellow River Estuary was 91.53%, with a Kappa coefficient of 0.90. Spectral diversity had the best inversion effect on the Shannon-Wiener index, with a maximum inversion accuracy of 57%, followed by the Pielou index (56%), community richness (48%), and finally the Simpson index (43%). The inversion accuracy of each landscape diversity index increased first and then stabilized with scale, reaching stability at a plot size of 2880×2880 m. The results of this study indicate that ZY1-02D hyperspectral data can monitor the spatial pattern changes of landscape diversity in the Yellow River Estuary. However, the accuracy is affected by the type of diversity index and spatial scale effects. The findings of this study provide a new perspective for the conservation and management of large-scale wetland landscape diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就知道完成签到,获得积分10
1秒前
2秒前
窝似恁叠完成签到,获得积分20
2秒前
zxj发布了新的文献求助10
3秒前
给桃子完成签到,获得积分10
3秒前
cannon8应助傅傅采纳,获得20
3秒前
3秒前
3秒前
djbj2022发布了新的文献求助10
4秒前
CipherSage应助Collice采纳,获得10
4秒前
英俊的铭应助猴子没有壳采纳,获得10
5秒前
6秒前
文艺大米完成签到,获得积分10
7秒前
彭于晏应助给桃子采纳,获得10
7秒前
绕地球3圈发布了新的文献求助10
7秒前
xiangzq发布了新的文献求助10
7秒前
7秒前
研友_Z6k7B8完成签到 ,获得积分10
7秒前
陆安完成签到,获得积分10
8秒前
一枝完成签到 ,获得积分10
8秒前
8秒前
所所应助留影采纳,获得10
9秒前
9秒前
Backto1998完成签到,获得积分10
9秒前
柚子完成签到,获得积分10
9秒前
9秒前
顾矜应助俏皮的豌豆采纳,获得10
10秒前
10秒前
sda完成签到,获得积分20
10秒前
小香草发布了新的文献求助20
11秒前
打打应助阳光的媚颜采纳,获得10
11秒前
12秒前
lyn发布了新的文献求助10
12秒前
啾啾发布了新的文献求助10
12秒前
浅香千雪完成签到,获得积分10
12秒前
感谢cc转发科研通微信,获得积分50
13秒前
南笙完成签到,获得积分10
13秒前
科研通AI2S应助高高母鸡采纳,获得10
13秒前
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3118877
求助须知:如何正确求助?哪些是违规求助? 2769071
关于积分的说明 7699714
捐赠科研通 2424452
什么是DOI,文献DOI怎么找? 1287795
科研通“疑难数据库(出版商)”最低求助积分说明 620629
版权声明 599962