Zy1-02d Satellite Hyperspectral Remote Sensing: Spatial Scaling Analysis and Monitoring of Landscape Wetland Diversity

高光谱成像 遥感 湿地 卫星 环境科学 缩放比例 多样性(政治) 地理 生态学 工程类 数学 几何学 社会学 人类学 生物 航空航天工程
作者
Siying Cheng,Weiwei Sun,Xiaodong Yang,Gang Yang,Binjie Chen,Kai Ren,Daosheng Chen
标识
DOI:10.2139/ssrn.4671699
摘要

Monitoring and assessing wetland diversity is crucial for its accurate preservation. Hyperspectral satellites have been proven effective for detailed investigations of plant diversity in large areas. However, it's unclear if spectral diversity can represent landscape diversity or if the inversion accuracy changes with spatial scale. In this study, we utilized the support vector machine method for supervised classification of ZY1-02D hyperspectral remote sensing images in the Yellow River Estuary. Subsequently, landscape diversity indices (community richness, Shannon-Wiener index, Simpson index, and Pielou index) and spectral diversity indices (coefficient of variation, convex hull volume, and eight vegetation indices) were calculated for its coastal wetlands. We then used a random forest model to predict landscape diversity based on spectral diversity. Finally, we explored the spatial scale relationship between spectral diversity and landscape diversity. The results showed that the overall accuracy of wetland classification in the Yellow River Estuary was 91.53%, with a Kappa coefficient of 0.90. Spectral diversity had the best inversion effect on the Shannon-Wiener index, with a maximum inversion accuracy of 57%, followed by the Pielou index (56%), community richness (48%), and finally the Simpson index (43%). The inversion accuracy of each landscape diversity index increased first and then stabilized with scale, reaching stability at a plot size of 2880×2880 m. The results of this study indicate that ZY1-02D hyperspectral data can monitor the spatial pattern changes of landscape diversity in the Yellow River Estuary. However, the accuracy is affected by the type of diversity index and spatial scale effects. The findings of this study provide a new perspective for the conservation and management of large-scale wetland landscape diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iNk应助西安小小朱采纳,获得10
刚刚
CodeCraft应助西安小小朱采纳,获得10
刚刚
无花果应助爱学习的小迟采纳,获得10
1秒前
哭泣的映寒完成签到 ,获得积分10
1秒前
xls完成签到,获得积分10
1秒前
1秒前
故意的傲玉应助圈圈采纳,获得10
1秒前
2秒前
522完成签到,获得积分10
2秒前
2秒前
kbj发布了新的文献求助10
2秒前
3秒前
老西瓜发布了新的文献求助10
3秒前
人各有痣完成签到,获得积分10
3秒前
后知后觉发布了新的文献求助10
3秒前
xiaoxiao发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
英姑应助哈哈呀采纳,获得10
5秒前
5秒前
hurry完成签到,获得积分10
5秒前
Hungrylunch应助陈玉婷采纳,获得20
5秒前
领导范儿应助hu970采纳,获得10
6秒前
new_vision发布了新的文献求助10
6秒前
拼搏翠桃完成签到,获得积分10
7秒前
糖糖科研顺利呀完成签到 ,获得积分10
7秒前
7秒前
阿秋完成签到,获得积分10
7秒前
Pangsj发布了新的文献求助10
8秒前
hhh发布了新的文献求助10
8秒前
好运藏在善良里完成签到,获得积分10
8秒前
情怀应助奋斗映寒采纳,获得10
8秒前
9秒前
CodeCraft应助牧海冬采纳,获得10
9秒前
zxcv23完成签到,获得积分10
9秒前
10秒前
小离发布了新的文献求助10
10秒前
yug完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672