Multi-view compression and collaboration for skin disease diagnosis

计算机科学 压缩(物理) 人工智能 机器学习 复合材料 材料科学
作者
Geng Gao,Yunfei He,Li Meng,Hequn Huang,Dong Zhang,Yiwen Zhang,Feng‐Li Xiao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123395-123395 被引量:2
标识
DOI:10.1016/j.eswa.2024.123395
摘要

In the field of skin disease diagnosis based on Convolutional Neural Networks (CNNs), there are currently two challenges. Firstly, there is a significant amount of label-independent information present in skin disease images. This information significantly affects the CNN’s ability to recognize skin disease. Finding an effective way to remove this label-independence is a challenging problem. Secondly, most research focuses solely on information-limited RGB images. It is imperative to introduce additional color space views. Hence, there is a need to investigate which combinations of views are most effective for skin disease diagnosis. To address these two issues, this study first employs the information bottleneck theory to guide convolution operations, retaining relevant skin lesion information while filtering out irrelevant details. Secondly, through a view selection method, a combination of RGB, HSL, and YCbCr was chosen from seven views, which exhibited the best performance. A multi-view compression and collaboration (MCC) framework was constructed based on these two approaches. MCC assists CNNs in removing label-independent information while enriching image views, ultimately enhancing the diagnosis of skin diseases. To validate the effectiveness of MCC, experiments were conducted by using ResNet-50, DensNet-169, Inception-v4, and ConvNeXt-B on both a self-collected hyperpigmented skin disease dataset and a public ISIC2018 dataset. The experimental results show that MCC can effectively improve the accuracy, precision, recall, and F1-score of CNNs. Thus, MCC has the potential to assist medical professionals in more accurately diagnosing skin diseases in clinical practice, thereby improving healthcare services and patients’ quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助席以亦采纳,获得10
刚刚
1秒前
平安喜乐完成签到 ,获得积分10
1秒前
2秒前
2秒前
机灵夜云发布了新的文献求助10
2秒前
小李新人完成签到 ,获得积分10
2秒前
vv发布了新的文献求助10
2秒前
浅惜完成签到,获得积分10
3秒前
自然的衫完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
鑫儿宝发布了新的文献求助10
4秒前
liangyuting完成签到,获得积分10
6秒前
CodeCraft应助从容书瑶采纳,获得10
6秒前
脑洞疼应助静夜谧思采纳,获得10
6秒前
RRRRRRR发布了新的文献求助10
7秒前
7秒前
喜洋洋发布了新的文献求助30
7秒前
8秒前
华仔应助秋以南采纳,获得10
8秒前
情怀应助susu采纳,获得10
8秒前
Bismarck发布了新的文献求助10
9秒前
Jiangnj发布了新的文献求助10
10秒前
卡多克完成签到,获得积分10
10秒前
JYPJYP完成签到,获得积分10
10秒前
竹筏过海应助fd163c采纳,获得30
10秒前
欣喜忻完成签到,获得积分10
11秒前
12秒前
12秒前
七天与完成签到,获得积分10
12秒前
胖胖书袋关注了科研通微信公众号
12秒前
13秒前
温暖的以旋完成签到,获得积分10
13秒前
从容书瑶完成签到,获得积分20
14秒前
胡关完成签到,获得积分10
15秒前
花花发布了新的文献求助10
16秒前
zgx完成签到,获得积分10
16秒前
彭于彦祖应助GHL采纳,获得30
16秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158860
求助须知:如何正确求助?哪些是违规求助? 2810040
关于积分的说明 7885599
捐赠科研通 2468890
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012