Multi-view compression and collaboration for skin disease diagnosis

计算机科学 压缩(物理) 人工智能 机器学习 复合材料 材料科学
作者
Geng Gao,Yunfei He,Li Meng,Hequn Huang,Dong Zhang,Yiwen Zhang,Feng‐Li Xiao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123395-123395 被引量:5
标识
DOI:10.1016/j.eswa.2024.123395
摘要

In the field of skin disease diagnosis based on Convolutional Neural Networks (CNNs), there are currently two challenges. Firstly, there is a significant amount of label-independent information present in skin disease images. This information significantly affects the CNN’s ability to recognize skin disease. Finding an effective way to remove this label-independence is a challenging problem. Secondly, most research focuses solely on information-limited RGB images. It is imperative to introduce additional color space views. Hence, there is a need to investigate which combinations of views are most effective for skin disease diagnosis. To address these two issues, this study first employs the information bottleneck theory to guide convolution operations, retaining relevant skin lesion information while filtering out irrelevant details. Secondly, through a view selection method, a combination of RGB, HSL, and YCbCr was chosen from seven views, which exhibited the best performance. A multi-view compression and collaboration (MCC) framework was constructed based on these two approaches. MCC assists CNNs in removing label-independent information while enriching image views, ultimately enhancing the diagnosis of skin diseases. To validate the effectiveness of MCC, experiments were conducted by using ResNet-50, DensNet-169, Inception-v4, and ConvNeXt-B on both a self-collected hyperpigmented skin disease dataset and a public ISIC2018 dataset. The experimental results show that MCC can effectively improve the accuracy, precision, recall, and F1-score of CNNs. Thus, MCC has the potential to assist medical professionals in more accurately diagnosing skin diseases in clinical practice, thereby improving healthcare services and patients’ quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoey完成签到,获得积分10
2秒前
半烟完成签到 ,获得积分10
2秒前
2秒前
2秒前
海比天蓝发布了新的文献求助10
3秒前
武雨寒完成签到 ,获得积分20
3秒前
超帅的碱发布了新的文献求助30
4秒前
jingxian完成签到,获得积分10
5秒前
5秒前
爆米花应助涛1118采纳,获得10
5秒前
5秒前
zhantianao发布了新的文献求助10
5秒前
6秒前
6秒前
10秒前
bbbui完成签到 ,获得积分10
11秒前
清仔发布了新的文献求助10
11秒前
11秒前
哼哼唧唧发布了新的文献求助10
11秒前
落玉盘发布了新的文献求助10
12秒前
余姓懒发布了新的文献求助10
13秒前
14秒前
14秒前
英吉利25发布了新的文献求助10
14秒前
英姑应助海比天蓝采纳,获得10
14秒前
15秒前
斯文念波发布了新的文献求助10
18秒前
18秒前
酷波er应助wlei采纳,获得10
18秒前
慕青应助15884134873采纳,获得10
18秒前
21秒前
21秒前
清脆的白开水应助哇wwwww采纳,获得10
22秒前
23秒前
肆_完成签到 ,获得积分10
23秒前
24秒前
充电宝应助Della采纳,获得10
25秒前
超帅的碱完成签到,获得积分10
26秒前
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176