Multi-view compression and collaboration for skin disease diagnosis

计算机科学 压缩(物理) 人工智能 机器学习 复合材料 材料科学
作者
Geng Gao,Yunfei He,Li Meng,Hequn Huang,Dong Zhang,Yiwen Zhang,Feng‐Li Xiao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123395-123395 被引量:5
标识
DOI:10.1016/j.eswa.2024.123395
摘要

In the field of skin disease diagnosis based on Convolutional Neural Networks (CNNs), there are currently two challenges. Firstly, there is a significant amount of label-independent information present in skin disease images. This information significantly affects the CNN’s ability to recognize skin disease. Finding an effective way to remove this label-independence is a challenging problem. Secondly, most research focuses solely on information-limited RGB images. It is imperative to introduce additional color space views. Hence, there is a need to investigate which combinations of views are most effective for skin disease diagnosis. To address these two issues, this study first employs the information bottleneck theory to guide convolution operations, retaining relevant skin lesion information while filtering out irrelevant details. Secondly, through a view selection method, a combination of RGB, HSL, and YCbCr was chosen from seven views, which exhibited the best performance. A multi-view compression and collaboration (MCC) framework was constructed based on these two approaches. MCC assists CNNs in removing label-independent information while enriching image views, ultimately enhancing the diagnosis of skin diseases. To validate the effectiveness of MCC, experiments were conducted by using ResNet-50, DensNet-169, Inception-v4, and ConvNeXt-B on both a self-collected hyperpigmented skin disease dataset and a public ISIC2018 dataset. The experimental results show that MCC can effectively improve the accuracy, precision, recall, and F1-score of CNNs. Thus, MCC has the potential to assist medical professionals in more accurately diagnosing skin diseases in clinical practice, thereby improving healthcare services and patients’ quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助zz采纳,获得10
刚刚
科研通AI6应助凉皮拌饭采纳,获得10
1秒前
李爱国应助善良的静柏采纳,获得10
1秒前
上官若男应助yc采纳,获得10
1秒前
妥妥酱完成签到,获得积分10
2秒前
dzc完成签到,获得积分10
3秒前
yk发布了新的文献求助10
6秒前
胜男完成签到,获得积分10
6秒前
7秒前
7秒前
DiH完成签到,获得积分10
7秒前
8秒前
明天不熬夜完成签到,获得积分10
9秒前
郭泓嵩完成签到,获得积分10
10秒前
10秒前
10秒前
樱桃小贩完成签到,获得积分0
11秒前
苹果发夹完成签到 ,获得积分10
12秒前
12秒前
张胡星发布了新的文献求助10
13秒前
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
wy.he应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
PU聚氨酯完成签到,获得积分10
16秒前
小耿完成签到,获得积分20
17秒前
科研通AI5应助怪味痘采纳,获得10
17秒前
18秒前
Elvin2527给Elvin2527的求助进行了留言
19秒前
量子星尘发布了新的文献求助10
21秒前
机智的乌发布了新的文献求助10
21秒前
RJ完成签到,获得积分10
22秒前
23秒前
24秒前
神秘玩家完成签到 ,获得积分10
26秒前
小鲨鱼发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833