Comprehensive, Open-Source, and Automated Workflow for Multisite λ-Dynamics in Lead Optimization

工作流程 计算机科学 开源 分子动力学 数据挖掘 笛卡尔坐标系 算法 计算科学 生物系统 化学 计算化学 数据库 软件 数学 生物 程序设计语言 几何学
作者
Renling Hu,Jintu Zhang,Yu Kang,Sheng Wang,Peichen Pan,Yafeng Deng,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (3): 1465-1478 被引量:1
标识
DOI:10.1021/acs.jctc.3c01154
摘要

Multisite λ-dynamics (MSLD) is a highly efficient binding free energy calculation method that samples multiple ligands in a single round by assigning different λ values to the alchemical part of each ligand. This method holds great promise for lead optimization (LO) in drug discovery. However, the complex data preparation and simulation process limits its widespread application in diverse protein–ligand systems. To address this challenge, we developed a comprehensive, open-source, and automated workflow for MSLD calculations based on the BLaDE dynamics engine. This workflow incorporates the Ligand Internal and Cartesian coordinate reconstruction-based alignment algorithm (LIC-align) and an optimized maximum common substructure (MCS) search algorithm to accurately generate MSLD multiple topologies with ideal perturbation patterns. Furthermore, our workflow is highly modularized, allowing straightforward integration and extension of various simulation techniques, and is highly accessible to nonexperts. This workflow was validated by calculating the relative binding free energies of large-scale congeneric ligands, many of which have large perturbing groups. The agreement between the calculations and experiments was excellent, with an average unsigned error of 1.08 ± 0.47 kcal/mol. More than 57.1% of the ligands had an error of less than 1.0 kcal/mol, and the perturbations of 6 targets were fully connected via the calculations, while those of 2 targets were connected via both calculations and experimental data. The Pearson correlation coefficient reached 0.88, indicating that the MSLD workflow provides accurate predictions that can guide lead optimization in drug discovery. We also examined the impact of single-site versus multisite perturbations, ligand grouping by perturbing group size, and the position of the anchor atom on the MSLD performance. By integrating our proposed LIC-align and optimized MCS search algorithm along with the coping strategies to handle challenging molecular substructures, our workflow can handle many realistic scenarios more reasonably than all previously published methods. Moreover, we observed that our MSLD workflow achieved similar accuracy to free energy perturbation (FEP) while improving computational efficiency by over 1 order of magnitude in speedup. These findings provide valuable insights and strategies for further MSLD development, making MSLD a competitive tool for lead optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氘代乙腈是不贵的呀完成签到,获得积分10
刚刚
陈chq发布了新的文献求助10
刚刚
Zzzyh发布了新的文献求助10
1秒前
YL完成签到,获得积分10
2秒前
2秒前
caicaikan完成签到,获得积分10
3秒前
学术猿完成签到,获得积分10
3秒前
平淡茈完成签到,获得积分10
5秒前
Wu Hao完成签到,获得积分10
5秒前
chili完成签到,获得积分10
7秒前
柒柒发布了新的文献求助10
7秒前
layla四月完成签到,获得积分10
7秒前
7秒前
hahaha完成签到,获得积分10
8秒前
贤惠的早晨应助贪玩映雁采纳,获得10
8秒前
syt完成签到,获得积分10
9秒前
9秒前
现实的碧灵完成签到 ,获得积分10
9秒前
xuaotian发布了新的文献求助30
9秒前
花道发布了新的文献求助10
10秒前
科研通AI2S应助洛花羽落采纳,获得10
12秒前
柒柒完成签到,获得积分10
12秒前
Jinyi发布了新的文献求助10
12秒前
WOLF完成签到,获得积分10
13秒前
Alvin发布了新的文献求助10
14秒前
14秒前
14秒前
layla四月发布了新的文献求助10
15秒前
15秒前
JamesPei应助eve采纳,获得10
16秒前
大力的西装完成签到,获得积分10
16秒前
17秒前
20秒前
20秒前
21秒前
隐形盼海发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
caozhi发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655