Software Defect Prediction Based on Deep Representation Learning of Source Code From Contextual Syntax and Semantic Graph

计算机科学 源代码 自然语言处理 语法 人工智能 图形 抽象语法 抽象语法树 程序设计语言 控制流程图 深度学习 语义学(计算机科学) 理论计算机科学
作者
Ahmed Abdu,Zhengjun Zhai,Hakim A. Abdo,Redhwan Algabri
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 820-834 被引量:9
标识
DOI:10.1109/tr.2024.3354965
摘要

Software defect prediction approaches play an essential role in the software development life cycle to help developers predict defects early, thus, preventing wasted time and effort. Defect prediction techniques based on semantic features have recently gained success over approaches based on traditional features. Existing semantic features-based defect prediction approaches use a single source code representation. Most studies focus on contextual syntax represented by abstract syntax trees, and some studies use a control flow graph to represent code graphs. However, a single representation is still limited for predicting defects that call multiple functions and have a high probability of false positives. To close the gap between source code representations on software defect prediction, we propose a defect prediction model based on multiple source code representations. The proposed model is a deep hierarchical convolutional neural network (DH-CNN). The syntax features extracted from abstract syntax trees using Word2vec are fed into syntax-level DH-CNN, and the semantic-graph features extracted from the control flow graph and data dependence graph using Node2vec are fed into semantic-level DH-CNN. In addition, the proposed model includes a gated merging mechanism that combines DH-CNN outputs to estimate the combination ratio of both types of features. Experimental results indicate that DH-CNN outperforms existing methods under cross-project and within-project scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助小北采纳,获得10
刚刚
医路前行发布了新的文献求助20
刚刚
刚刚
源歌完成签到,获得积分10
刚刚
哈哈哈哈完成签到,获得积分10
2秒前
嘻嘻完成签到,获得积分10
2秒前
2秒前
无尽夏完成签到,获得积分10
3秒前
www发布了新的文献求助10
3秒前
4秒前
善学以致用应助明@钰采纳,获得10
4秒前
Crazy_Runner发布了新的文献求助10
4秒前
Ganlou应助Karl采纳,获得10
4秒前
5秒前
谦让平安发布了新的文献求助10
5秒前
6秒前
周1发布了新的文献求助10
6秒前
Lucas应助hinasama采纳,获得10
6秒前
田様应助Aimer的小迷弟采纳,获得10
6秒前
领导范儿应助wanghuihui采纳,获得10
6秒前
cocolu应助上下采纳,获得10
8秒前
Pocketter发布了新的文献求助10
9秒前
9秒前
小羊发布了新的文献求助10
9秒前
9秒前
Labman完成签到,获得积分10
10秒前
可爱的函函应助xiu-er采纳,获得10
10秒前
10秒前
11秒前
发发发发布了新的文献求助10
11秒前
wwxxxkkk完成签到,获得积分20
11秒前
12秒前
隐形曼青应助summuryi采纳,获得10
12秒前
ting5260发布了新的文献求助10
12秒前
开心大王完成签到,获得积分20
13秒前
13秒前
科研通AI2S应助瑾瑜采纳,获得10
13秒前
隐形如凡发布了新的文献求助10
13秒前
avocadoQ完成签到 ,获得积分10
13秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297171
求助须知:如何正确求助?哪些是违规求助? 2932698
关于积分的说明 8458339
捐赠科研通 2605362
什么是DOI,文献DOI怎么找? 1422222
科研通“疑难数据库(出版商)”最低求助积分说明 661351
邀请新用户注册赠送积分活动 644565