Identifying OGN as a Biomarker Covering Multiple Pathogenic Pathways for Diagnosing Heart Failure: From Machine Learning to Mechanism Interpretation

孟德尔随机化 生物标志物 生物信息学 计算生物学 基因 遗传学 生物 基因型 遗传变异
作者
Yihao Zhu,Bin Chen,Yao Zu
出处
期刊:Biomolecules [MDPI AG]
卷期号:14 (2): 179-179
标识
DOI:10.3390/biom14020179
摘要

Background: The pathophysiologic heterogeneity of heart failure (HF) necessitates a more detailed identification of diagnostic biomarkers that can reflect its diverse pathogenic pathways. Methods: We conducted weighted gene and multiscale embedded gene co-expression network analysis on differentially expressed genes obtained from HF and non-HF specimens. We employed a machine learning integration framework and protein–protein interaction network to identify diagnostic biomarkers. Additionally, we integrated gene set variation analysis, gene set enrichment analysis (GSEA), and transcription factor (TF)-target analysis to unravel the biomarker-dominant pathways. Leveraging single-sample GSEA and molecular docking, we predicted immune cells and therapeutic drugs related to biomarkers. Quantitative polymerase chain reaction validated the expressions of biomarkers in the plasma of HF patients. A two-sample Mendelian randomization analysis was implemented to investigate the causal impact of biomarkers on HF. Results: We first identified COL14A1, OGN, MFAP4, and SFRP4 as candidate biomarkers with robust diagnostic performance. We revealed that regulating biomarkers in HF pathogenesis involves TFs (BNC2, MEOX2) and pathways (cell adhesion molecules, chemokine signaling pathway, cytokine–cytokine receptor interaction, oxidative phosphorylation). Moreover, we observed the elevated infiltration of effector memory CD4+ T cells in HF, which was highly related to biomarkers and could impact immune pathways. Captopril, aldosterone antagonist, cyclopenthiazide, estradiol, tolazoline, and genistein were predicted as therapeutic drugs alleviating HF via interactions with biomarkers. In vitro study confirmed the up-regulation of OGN as a plasma biomarker of HF. Mendelian randomization analysis suggested that genetic predisposition toward higher plasma OGN promoted the risk of HF. Conclusions: We propose OGN as a diagnostic biomarker for HF, which may advance our understanding of the diagnosis and pathogenesis of HF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子发布了新的文献求助10
刚刚
1秒前
研友_LaOyQZ发布了新的文献求助10
1秒前
2秒前
顾矜应助纤指细轻捻采纳,获得10
2秒前
2秒前
CC发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
Seven发布了新的文献求助10
3秒前
3秒前
pyb0919完成签到,获得积分10
4秒前
4秒前
4秒前
hyy发布了新的文献求助10
4秒前
zzzzzz发布了新的文献求助10
4秒前
无花果应助星空采纳,获得10
5秒前
高贵魂幽发布了新的文献求助10
6秒前
Antares发布了新的文献求助10
6秒前
zuozuo发布了新的文献求助10
6秒前
6秒前
郭郭发布了新的文献求助30
7秒前
7秒前
游元稔发布了新的文献求助10
7秒前
Janson发布了新的文献求助10
7秒前
酷炫的书本完成签到,获得积分10
7秒前
研友_VZG7GZ应助lyx采纳,获得10
8秒前
脑洞疼应助yuzhi采纳,获得10
8秒前
研友_LaOyQZ完成签到,获得积分10
8秒前
杜志洪发布了新的文献求助30
8秒前
8秒前
xiaoyou完成签到,获得积分10
9秒前
科研通AI6应助Luo采纳,获得10
9秒前
9秒前
李爱国应助YYY采纳,获得30
9秒前
王柯发布了新的文献求助10
9秒前
9秒前
祖国人发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352476
求助须知:如何正确求助?哪些是违规求助? 4485321
关于积分的说明 13962707
捐赠科研通 4385239
什么是DOI,文献DOI怎么找? 2409332
邀请新用户注册赠送积分活动 1401777
关于科研通互助平台的介绍 1375357