Identifying OGN as a Biomarker Covering Multiple Pathogenic Pathways for Diagnosing Heart Failure: From Machine Learning to Mechanism Interpretation

孟德尔随机化 生物标志物 生物信息学 计算生物学 基因 遗传学 生物 基因型 遗传变异
作者
Yihao Zhu,Bin Chen,Yao Zu
出处
期刊:Biomolecules [Multidisciplinary Digital Publishing Institute]
卷期号:14 (2): 179-179
标识
DOI:10.3390/biom14020179
摘要

Background: The pathophysiologic heterogeneity of heart failure (HF) necessitates a more detailed identification of diagnostic biomarkers that can reflect its diverse pathogenic pathways. Methods: We conducted weighted gene and multiscale embedded gene co-expression network analysis on differentially expressed genes obtained from HF and non-HF specimens. We employed a machine learning integration framework and protein–protein interaction network to identify diagnostic biomarkers. Additionally, we integrated gene set variation analysis, gene set enrichment analysis (GSEA), and transcription factor (TF)-target analysis to unravel the biomarker-dominant pathways. Leveraging single-sample GSEA and molecular docking, we predicted immune cells and therapeutic drugs related to biomarkers. Quantitative polymerase chain reaction validated the expressions of biomarkers in the plasma of HF patients. A two-sample Mendelian randomization analysis was implemented to investigate the causal impact of biomarkers on HF. Results: We first identified COL14A1, OGN, MFAP4, and SFRP4 as candidate biomarkers with robust diagnostic performance. We revealed that regulating biomarkers in HF pathogenesis involves TFs (BNC2, MEOX2) and pathways (cell adhesion molecules, chemokine signaling pathway, cytokine–cytokine receptor interaction, oxidative phosphorylation). Moreover, we observed the elevated infiltration of effector memory CD4+ T cells in HF, which was highly related to biomarkers and could impact immune pathways. Captopril, aldosterone antagonist, cyclopenthiazide, estradiol, tolazoline, and genistein were predicted as therapeutic drugs alleviating HF via interactions with biomarkers. In vitro study confirmed the up-regulation of OGN as a plasma biomarker of HF. Mendelian randomization analysis suggested that genetic predisposition toward higher plasma OGN promoted the risk of HF. Conclusions: We propose OGN as a diagnostic biomarker for HF, which may advance our understanding of the diagnosis and pathogenesis of HF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助饼饼采纳,获得10
1秒前
mr.pork发布了新的文献求助10
1秒前
小马甲应助鲤鱼似狮采纳,获得10
3秒前
3秒前
ttt完成签到,获得积分10
5秒前
饼饼完成签到,获得积分10
7秒前
科研通AI5应助王华楠采纳,获得10
8秒前
9秒前
10秒前
10秒前
gao应助cindywu采纳,获得10
12秒前
顾矜应助郭小宝采纳,获得10
13秒前
14秒前
15秒前
英子发布了新的文献求助10
15秒前
肝胆外科医生完成签到,获得积分10
15秒前
淡定草丛发布了新的文献求助10
16秒前
Ella完成签到,获得积分10
17秒前
17秒前
天天开心完成签到,获得积分10
18秒前
19秒前
19秒前
研友_ngkyGn应助徐rl采纳,获得10
20秒前
科研通AI2S应助张于小丸子采纳,获得10
20秒前
20秒前
Kris发布了新的文献求助10
21秒前
alex完成签到,获得积分10
23秒前
24秒前
郭小宝发布了新的文献求助10
24秒前
26秒前
泡面养鱼发布了新的文献求助10
27秒前
ding应助大头采纳,获得10
28秒前
臧佳莹发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
咚咚完成签到 ,获得积分10
30秒前
王华楠发布了新的文献求助10
31秒前
水流众生完成签到 ,获得积分10
32秒前
32秒前
star完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068