已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
黑泡泡发布了新的文献求助10
6秒前
Tangyuan完成签到,获得积分10
6秒前
李蝶儿完成签到 ,获得积分10
7秒前
Wdw2236完成签到,获得积分20
7秒前
sqHALO完成签到,获得积分10
8秒前
zhanzhanzhan完成签到,获得积分10
9秒前
香蕉觅云应助Tangyuan采纳,获得10
11秒前
Swu完成签到,获得积分10
12秒前
12秒前
所所应助zuzu采纳,获得10
16秒前
16秒前
17秒前
无情的冰香完成签到 ,获得积分10
19秒前
朱一龙完成签到,获得积分10
19秒前
24秒前
Criminology34举报ddrose求助涉嫌违规
24秒前
阿朱完成签到 ,获得积分10
25秒前
汉堡包应助孔夫子采纳,获得10
26秒前
天天快乐应助庾稀采纳,获得10
26秒前
chengxiping发布了新的文献求助10
26秒前
26秒前
yangyangyang完成签到,获得积分10
27秒前
28秒前
JohanXu完成签到,获得积分10
29秒前
深情安青应助wd采纳,获得10
30秒前
32秒前
yyy发布了新的文献求助10
32秒前
33秒前
rainbow完成签到,获得积分10
33秒前
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
爆米花应助科研通管家采纳,获得10
34秒前
爆米花应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040