LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
在水一方应助huhubei采纳,获得10
3秒前
wangli发布了新的文献求助10
3秒前
深情安青应助zmy采纳,获得10
4秒前
4秒前
cm完成签到,获得积分10
5秒前
Hello应助鳗鱼灰狼采纳,获得10
8秒前
情怀应助wangli采纳,获得10
9秒前
57r7uf完成签到,获得积分10
10秒前
桐桐应助呆呆采纳,获得10
10秒前
Lucas应助txt0127采纳,获得10
10秒前
有点甜完成签到,获得积分10
11秒前
科研通AI2S应助SYSUer采纳,获得10
11秒前
ding应助Evaporate采纳,获得10
13秒前
13秒前
cdragon完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
cellur发布了新的文献求助10
17秒前
寂寞的听双完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
wwwwwei发布了新的文献求助10
18秒前
Picopy完成签到,获得积分10
18秒前
yolo发布了新的文献求助10
18秒前
alazka发布了新的文献求助10
20秒前
李健应助全能采纳,获得10
21秒前
zls完成签到,获得积分10
22秒前
诸葛不亮完成签到,获得积分10
22秒前
24秒前
green完成签到,获得积分10
24秒前
24秒前
24秒前
27秒前
eryu25完成签到 ,获得积分10
27秒前
28秒前
愫问完成签到,获得积分10
29秒前
优美巨人发布了新的文献求助10
29秒前
cdercder应助zls采纳,获得30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492586
求助须知:如何正确求助?哪些是违规求助? 4590623
关于积分的说明 14431212
捐赠科研通 4523084
什么是DOI,文献DOI怎么找? 2478175
邀请新用户注册赠送积分活动 1463195
关于科研通互助平台的介绍 1435900