LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sasa发布了新的文献求助10
1秒前
Lexi发布了新的文献求助10
1秒前
积极的凝云完成签到,获得积分10
1秒前
半夏发布了新的文献求助10
1秒前
月星发布了新的文献求助10
2秒前
睿力发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
伶俐的夜梦完成签到,获得积分10
2秒前
Tracy完成签到,获得积分10
3秒前
随便关注了科研通微信公众号
3秒前
TIAMO完成签到,获得积分10
4秒前
4秒前
Nes完成签到,获得积分20
4秒前
5秒前
5秒前
CherylZhao发布了新的文献求助10
6秒前
爆米花应助wen采纳,获得10
6秒前
6秒前
sasa完成签到,获得积分10
7秒前
Orange应助眼里还有光采纳,获得10
8秒前
小蘑菇应助伶俐的夜梦采纳,获得30
8秒前
weiyi完成签到,获得积分20
8秒前
ff发布了新的文献求助10
9秒前
Fortune完成签到,获得积分10
9秒前
邹秋雨发布了新的文献求助10
9秒前
123lx完成签到 ,获得积分10
9秒前
10秒前
轻松完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
一一应助小蓝采纳,获得10
12秒前
13秒前
开心秋天完成签到 ,获得积分10
13秒前
jjgod发布了新的文献求助10
13秒前
CherylZhao完成签到,获得积分10
14秒前
Eilleen发布了新的文献求助10
14秒前
何静发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802