LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
1秒前
1秒前
lasfjas完成签到,获得积分10
1秒前
酷波er应助吕宁采纳,获得10
2秒前
浮生完成签到,获得积分10
2秒前
脂蛋白抗原完成签到,获得积分10
3秒前
x1完成签到,获得积分10
3秒前
RUI完成签到 ,获得积分10
3秒前
拿铁五分糖完成签到,获得积分10
3秒前
zz发布了新的文献求助10
3秒前
3秒前
莫羽倾尘完成签到,获得积分0
4秒前
aaa完成签到 ,获得积分10
4秒前
5秒前
5秒前
科研通AI6应助ASA采纳,获得10
5秒前
靓丽的采白完成签到,获得积分10
5秒前
核桃发布了新的文献求助10
5秒前
大吉发布了新的文献求助10
6秒前
li完成签到,获得积分10
6秒前
xf发布了新的文献求助10
6秒前
bird完成签到,获得积分10
6秒前
fan_alive完成签到,获得积分20
6秒前
黑哥完成签到,获得积分10
7秒前
一点通完成签到,获得积分10
7秒前
英俊的铭应助胡明轩采纳,获得10
7秒前
羲月完成签到,获得积分10
7秒前
苹果骑士完成签到,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助30
8秒前
无私的颤完成签到,获得积分10
8秒前
小小小乐完成签到 ,获得积分10
8秒前
王晓完成签到,获得积分10
8秒前
tiki完成签到,获得积分10
8秒前
高大草莓完成签到 ,获得积分10
9秒前
yenom完成签到,获得积分10
9秒前
yhy完成签到,获得积分10
9秒前
欣慰的以冬完成签到 ,获得积分10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598448
求助须知:如何正确求助?哪些是违规求助? 4009551
关于积分的说明 12411589
捐赠科研通 3688931
什么是DOI,文献DOI怎么找? 2033578
邀请新用户注册赠送积分活动 1066779
科研通“疑难数据库(出版商)”最低求助积分说明 951864