LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 物理 数学分析 哲学 光学 政治 语言学 法学 数学 政治学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助悟空采纳,获得10
刚刚
本人很懒没有名字完成签到 ,获得积分10
3秒前
Lyn完成签到,获得积分10
6秒前
Ohoooo完成签到,获得积分10
8秒前
清爽尔安完成签到,获得积分10
9秒前
香蕉觅云应助Ann采纳,获得10
10秒前
搜集达人应助祥梦伊飞采纳,获得30
10秒前
Owen应助单纯面包采纳,获得10
16秒前
Zoom完成签到,获得积分10
16秒前
QP34完成签到 ,获得积分10
17秒前
17秒前
彭于晏应助炸鸡加热采纳,获得10
18秒前
knn发布了新的文献求助10
18秒前
xianyu完成签到,获得积分10
21秒前
麦乐兴完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
26秒前
开心发布了新的文献求助10
26秒前
29秒前
科研通AI2S应助和谐为上采纳,获得10
29秒前
祥梦伊飞发布了新的文献求助30
30秒前
羊老三发布了新的文献求助10
31秒前
Ann发布了新的文献求助10
32秒前
在我梦里绕完成签到,获得积分10
33秒前
33秒前
pb完成签到 ,获得积分10
33秒前
Gaojin锦完成签到,获得积分10
36秒前
38秒前
kaikai完成签到,获得积分10
38秒前
Ann完成签到,获得积分10
41秒前
kaikai发布了新的文献求助10
42秒前
42秒前
炸鸡加热发布了新的文献求助10
43秒前
橙汁椰子汁完成签到,获得积分10
44秒前
wch666完成签到,获得积分10
46秒前
Singularity应助knn采纳,获得10
49秒前
科研通AI2S应助谷歌采纳,获得10
49秒前
小马甲应助科研通管家采纳,获得10
52秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023