LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyq完成签到,获得积分20
1秒前
1秒前
2秒前
什么也难不倒我完成签到 ,获得积分10
3秒前
超级日光完成签到 ,获得积分20
3秒前
4秒前
李健应助哗啦啦采纳,获得10
4秒前
nanali19完成签到,获得积分10
4秒前
hailiangzheng完成签到,获得积分10
5秒前
东单的单车发布了新的文献求助150
5秒前
6秒前
6秒前
Shan5发布了新的文献求助30
6秒前
syn发布了新的文献求助10
7秒前
陈瞿硕完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
10秒前
科研通AI6应助感动苡采纳,获得10
10秒前
轨迹应助rsq采纳,获得20
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
12秒前
Hour发布了新的文献求助10
12秒前
misschiu发布了新的文献求助10
12秒前
情怀应助美好斓采纳,获得30
12秒前
量子星尘发布了新的文献求助10
13秒前
zhangxuhns完成签到,获得积分10
14秒前
Helene完成签到,获得积分10
14秒前
陈晶发布了新的文献求助10
15秒前
11发布了新的文献求助10
16秒前
17秒前
17秒前
Lmy完成签到 ,获得积分10
17秒前
星辰大海完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756