LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助马dong采纳,获得10
1秒前
1秒前
1秒前
zhuangxiong完成签到,获得积分10
1秒前
2秒前
qq关注了科研通微信公众号
2秒前
3秒前
3秒前
3秒前
4秒前
大饼卷肉完成签到,获得积分10
4秒前
4秒前
litianchi完成签到,获得积分10
4秒前
SOBER发布了新的文献求助10
5秒前
秋识完成签到,获得积分10
6秒前
喔喔佳佳发布了新的文献求助10
7秒前
future发布了新的文献求助10
7秒前
领导范儿应助诚心的源智采纳,获得10
7秒前
yuyijk发布了新的文献求助10
8秒前
隐形曼青应助幸福芝麻采纳,获得10
8秒前
快乐花生发布了新的文献求助10
8秒前
果冻橙发布了新的文献求助20
8秒前
追忆淮发布了新的文献求助10
9秒前
我是老大应助彩云追月采纳,获得10
9秒前
费隐发布了新的文献求助10
9秒前
10秒前
密斯特蟹完成签到,获得积分10
10秒前
10秒前
11秒前
小瞬完成签到,获得积分10
12秒前
慕子完成签到 ,获得积分10
12秒前
13秒前
崔崔崔完成签到,获得积分10
13秒前
小爱完成签到 ,获得积分10
15秒前
15秒前
SOBER完成签到,获得积分10
15秒前
汪宇发布了新的文献求助10
16秒前
虚荣的泥猴桃完成签到 ,获得积分10
16秒前
马dong发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369