亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田俊垚发布了新的文献求助10
刚刚
4秒前
WW完成签到,获得积分20
9秒前
Winter完成签到 ,获得积分10
11秒前
星辰大海应助田俊垚采纳,获得10
12秒前
14秒前
jjy完成签到,获得积分10
14秒前
20秒前
21秒前
32秒前
随便完成签到 ,获得积分10
42秒前
43秒前
量子星尘发布了新的文献求助10
49秒前
uscd_del发布了新的文献求助10
50秒前
54秒前
害羞奶绿完成签到,获得积分10
56秒前
xii发布了新的文献求助10
1分钟前
qpp完成签到,获得积分10
1分钟前
1分钟前
1分钟前
我是老大应助YANGLan采纳,获得10
1分钟前
兴奋元冬发布了新的文献求助10
1分钟前
lb001完成签到 ,获得积分10
1分钟前
是三石啊完成签到 ,获得积分10
1分钟前
uscd_del完成签到,获得积分0
1分钟前
1分钟前
xii完成签到,获得积分10
1分钟前
YANGLan发布了新的文献求助10
1分钟前
爱扎丸子头的红红完成签到 ,获得积分10
1分钟前
YANGLan完成签到,获得积分10
1分钟前
落寞飞烟完成签到,获得积分10
1分钟前
2分钟前
HCCha完成签到,获得积分10
2分钟前
田様应助run采纳,获得10
2分钟前
konosuba完成签到,获得积分0
2分钟前
2分钟前
认真的幻姬完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高兴电脑完成签到,获得积分10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126738
求助须知:如何正确求助?哪些是违规求助? 4330093
关于积分的说明 13492787
捐赠科研通 4165406
什么是DOI,文献DOI怎么找? 2283359
邀请新用户注册赠送积分活动 1284370
关于科研通互助平台的介绍 1224099