LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
有趣的银发布了新的文献求助10
刚刚
蜀安应助科研通管家采纳,获得30
刚刚
Ava应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
蜀安应助科研通管家采纳,获得30
刚刚
所所应助科研通管家采纳,获得10
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
spy54180完成签到,获得积分10
刚刚
刚刚
wy.he应助科研通管家采纳,获得10
刚刚
wy.he应助科研通管家采纳,获得10
刚刚
wy.he应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
TZMY完成签到,获得积分10
3秒前
大一京城完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
xlk完成签到,获得积分10
6秒前
teriteri完成签到,获得积分10
6秒前
6秒前
余喆完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
xudaniel完成签到,获得积分10
10秒前
11秒前
斯文雪青完成签到,获得积分10
11秒前
大方煎蛋发布了新的文献求助10
11秒前
12秒前
yxl发布了新的文献求助10
14秒前
完美焦完成签到,获得积分10
15秒前
15秒前
惠老师发布了新的文献求助10
16秒前
英俊的铭应助作业对不起采纳,获得10
20秒前
蒲云海发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861