清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal deep learning for personalized renal cell carcinoma prognosis: Integrating CT imaging and clinical data

肾细胞癌 医学 随机森林 人工智能 特征选择 机器学习 深度学习 一致性 肾透明细胞癌 放射科 计算机科学 肿瘤科 内科学
作者
Maryamalsadat Mahootiha,Hemin Ali Qadir,Jacob Bergsland,Ilangko Balasingham
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107978-107978 被引量:3
标识
DOI:10.1016/j.cmpb.2023.107978
摘要

Background and Objective: Renal cell carcinoma represents a significant global health challenge with a low survival rate. The aim of this research was to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma by integrating CT imaging and clinical data and addressing the limitations observed in prior studies. The aim is to facilitate the identification of patients requiring urgent treatment. Methods: The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction. Based on the 3D CNN architecture, the feature extractor module predicts the ISUP grade of renal cell carcinoma tumors linked to mortality rates from CT images. Clinical variables are systematically selected using the Spearman score and random forest importance score as criteria. A deep learning-based network, trained with discrete LogisticHazard-based loss, performs the survival prediction. Nine distinct experiments are performed, with varying numbers of clinical variables determined by different thresholds of the Spearman and importance scores. Results: Our findings demonstrate that the proposed strategy surpasses the current literature on renal cancer prognosis based on CT scans and clinical factors. The best-performing experiment yielded a concordance index of 0.84 and an area under the curve value of 0.8 on the test cohort, which suggests strong predictive power. Conclusions: The multimodal deep-learning approach developed in this study shows promising results in estimating survival probabilities for renal cell carcinoma patients using CT imaging and clinical data. This may have potential implications in identifying patients who require urgent treatment, potentially improving patient outcomes. The code created for this project is available for the public on: GitHub
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
46秒前
huangzsdy完成签到,获得积分10
1分钟前
1分钟前
2分钟前
jun完成签到,获得积分10
2分钟前
2分钟前
2分钟前
明理从露完成签到 ,获得积分10
2分钟前
勤劳的木木完成签到 ,获得积分10
3分钟前
3分钟前
舒适涵山完成签到,获得积分10
3分钟前
爱静静应助breeze采纳,获得10
3分钟前
Zhangfu完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
薏仁完成签到 ,获得积分10
5分钟前
17852573662完成签到,获得积分10
6分钟前
muriel完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
qdlsc完成签到,获得积分10
8分钟前
所所应助qdlsc采纳,获得10
8分钟前
8分钟前
qdlsc发布了新的文献求助10
8分钟前
8分钟前
迅速的月光完成签到 ,获得积分10
8分钟前
实力不允许完成签到 ,获得积分10
8分钟前
8分钟前
Sandy完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
9分钟前
爱静静举报秦秦秦求助涉嫌违规
10分钟前
10分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142