模块化设计
计算机科学
自组织
执行机构
分布式计算
骨料(复合)
自重构模块化机器人
机器人学
群体行为
联轴节(管道)
控制工程
机器人
人工智能
工程类
纳米技术
机械工程
移动机器人
材料科学
操作系统
机器人控制
作者
Baudouin Saintyves,Matthew Spenko,Heinrich M. Jaeger
出处
期刊:Science robotics
[American Association for the Advancement of Science (AAAS)]
日期:2024-01-24
卷期号:9 (86)
被引量:7
标识
DOI:10.1126/scirobotics.adh4130
摘要
Designing robotic systems that can change their physical form factor as well as their compliance to adapt to environmental constraints remains a major conceptual and technical challenge. To address this, we introduce the Granulobot, a modular system that blurs the distinction between soft, modular, and swarm robotics. The system consists of gear-like units that each contain a single actuator such that units can self-assemble into larger, granular aggregates using magnetic coupling. These aggregates can reconfigure dynamically and also split into subsystems that might later recombine. Aggregates can self-organize into collective states with solid- and liquid-like properties, thus displaying widely differing compliance. These states can be perturbed locally via actuators or externally via mechanical feedback from the environment to produce adaptive shape-shifting in a decentralized manner. This, in turn, can generate locomotion strategies adapted to different conditions. Aggregates can move over obstacles without using external sensors or coordinates to maintain a steady gait over different surfaces without electronic communication among units. The modular design highlights a physical, morphological form of control that advances the development of resilient robotic systems with the ability to morph and adapt to different functions and conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI