EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features

脑电图 模式识别(心理学) 人工智能 计算机科学 支持向量机 判别式 特征选择 语音识别 面部识别系统 特征提取 微分熵 脑-机接口 心理学 雷诺熵 最大熵原理 神经科学
作者
Guoyang Liu,Yiming Wen,Janet H. Hsiao,Defei Zhang,Tian Lan,Weidong Zhou
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 44-55
标识
DOI:10.1109/thms.2023.3332209
摘要

The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time–frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain–computer interface for EEG-based face recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真笑白完成签到,获得积分10
刚刚
beichuanheqi完成签到,获得积分10
刚刚
1秒前
鲁梦阳发布了新的文献求助10
1秒前
2秒前
mm发布了新的文献求助10
2秒前
3秒前
3秒前
zila发布了新的文献求助10
3秒前
雨霧雲发布了新的文献求助10
3秒前
4秒前
小媛发布了新的文献求助10
4秒前
稳重的蜡烛完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
善学以致用应助日富一日采纳,获得30
6秒前
6秒前
叶子完成签到 ,获得积分10
6秒前
纳木错的蓝完成签到,获得积分10
7秒前
小船发布了新的文献求助10
7秒前
最终幻想完成签到,获得积分10
7秒前
温眸发布了新的文献求助10
8秒前
今后应助玄狼采纳,获得10
8秒前
10秒前
10秒前
完美世界应助小王采纳,获得10
10秒前
10秒前
zila完成签到,获得积分10
11秒前
西屿清潺完成签到,获得积分10
11秒前
希望天下0贩的0应助sinlar采纳,获得10
11秒前
小二郎应助crowd_lpy采纳,获得10
11秒前
lisn发布了新的文献求助10
11秒前
科目三应助苏苏采纳,获得10
12秒前
13秒前
Arlene发布了新的文献求助10
13秒前
ding应助棋士采纳,获得10
13秒前
小船完成签到,获得积分10
14秒前
黄瓜儿完成签到,获得积分10
14秒前
lilei完成签到,获得积分10
15秒前
小媛完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751