EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features

脑电图 模式识别(心理学) 人工智能 计算机科学 支持向量机 判别式 特征选择 语音识别 面部识别系统 特征提取 微分熵 脑-机接口 心理学 雷诺熵 最大熵原理 神经科学
作者
Guoyang Liu,Yiming Wen,Janet H. Hsiao,Defei Zhang,Tian Lan,Weidong Zhou
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 44-55
标识
DOI:10.1109/thms.2023.3332209
摘要

The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time–frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain–computer interface for EEG-based face recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Verseau发布了新的文献求助10
1秒前
1秒前
王颖朝完成签到,获得积分20
3秒前
心灵美书瑶完成签到,获得积分10
3秒前
3秒前
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
科研乞丐应助科研通管家采纳,获得20
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
讲座梅郎完成签到,获得积分10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
鳗鱼鞋垫发布了新的文献求助10
6秒前
艺二叁完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
丹丹丹应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Mic应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
小奕应助科研通管家采纳,获得50
7秒前
净禅完成签到 ,获得积分10
7秒前
9秒前
纸飞机完成签到 ,获得积分10
9秒前
CC发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416974
求助须知:如何正确求助?哪些是违规求助? 4533038
关于积分的说明 14138072
捐赠科研通 4449148
什么是DOI,文献DOI怎么找? 2440600
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858