EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features

脑电图 模式识别(心理学) 人工智能 计算机科学 支持向量机 判别式 特征选择 语音识别 面部识别系统 特征提取 微分熵 脑-机接口 心理学 雷诺熵 最大熵原理 神经科学
作者
Guoyang Liu,Yiming Wen,Janet H. Hsiao,Defei Zhang,Tian Lan,Weidong Zhou
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 44-55
标识
DOI:10.1109/thms.2023.3332209
摘要

The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time–frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain–computer interface for EEG-based face recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助淘宝叮咚采纳,获得10
刚刚
小马甲应助淘宝叮咚采纳,获得10
刚刚
2秒前
2秒前
2秒前
yn完成签到,获得积分10
3秒前
3秒前
不安青牛应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
阔达紫青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
不安青牛应助科研通管家采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
聪慧小霜应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
Hui完成签到,获得积分10
5秒前
852应助科研通管家采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
鸣笛应助科研通管家采纳,获得20
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
不安青牛应助科研通管家采纳,获得10
6秒前
不安青牛应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
爱笑的小羽毛完成签到,获得积分20
7秒前
无花果应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
华仔应助en采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
lzj应助科研通管家采纳,获得20
7秒前
研友_VZG7GZ应助阿良采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536