EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features

脑电图 模式识别(心理学) 人工智能 计算机科学 支持向量机 判别式 特征选择 语音识别 面部识别系统 特征提取 微分熵 脑-机接口 心理学 雷诺熵 最大熵原理 神经科学
作者
Guoyang Liu,Yiming Wen,Janet H. Hsiao,Defei Zhang,Tian Lan,Weidong Zhou
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 44-55
标识
DOI:10.1109/thms.2023.3332209
摘要

The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time–frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain–computer interface for EEG-based face recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺临发布了新的文献求助10
刚刚
Ava应助笨蛋偷学采纳,获得10
1秒前
1秒前
大胆听莲发布了新的文献求助10
1秒前
1秒前
2秒前
buguxx完成签到,获得积分10
3秒前
3秒前
上官追命完成签到,获得积分10
4秒前
PengHu发布了新的文献求助50
4秒前
月岛滴滴完成签到,获得积分10
4秒前
聪明帅哥发布了新的文献求助10
4秒前
yu完成签到,获得积分10
4秒前
西溪浅浅完成签到 ,获得积分10
4秒前
酷爱小飞完成签到,获得积分10
5秒前
6秒前
鑫xin完成签到,获得积分20
6秒前
7秒前
淡淡依霜完成签到 ,获得积分10
7秒前
旷野完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
妮妮完成签到,获得积分10
8秒前
9秒前
凉风送信完成签到,获得积分10
9秒前
Ryan完成签到,获得积分10
9秒前
Orange应助SYY采纳,获得10
9秒前
10秒前
10秒前
科研通AI6.1应助可可采纳,获得10
10秒前
辛勤的夏云完成签到 ,获得积分10
10秒前
PengHu完成签到,获得积分10
10秒前
橙橙完成签到,获得积分10
11秒前
11秒前
许陈静完成签到,获得积分10
11秒前
细心难摧完成签到 ,获得积分10
11秒前
ilihe应助w1x2123采纳,获得10
11秒前
WWWWj完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774251
求助须知:如何正确求助?哪些是违规求助? 5616574
关于积分的说明 15435095
捐赠科研通 4906776
什么是DOI,文献DOI怎么找? 2640385
邀请新用户注册赠送积分活动 1588179
关于科研通互助平台的介绍 1543225