EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features

脑电图 模式识别(心理学) 人工智能 计算机科学 支持向量机 判别式 特征选择 语音识别 面部识别系统 特征提取 微分熵 脑-机接口 心理学 雷诺熵 最大熵原理 神经科学
作者
Guoyang Liu,Yiming Wen,Janet H. Hsiao,Defei Zhang,Tian Lan,Weidong Zhou
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 44-55
标识
DOI:10.1109/thms.2023.3332209
摘要

The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time–frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain–computer interface for EEG-based face recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助我爱学习采纳,获得20
1秒前
萤火虫完成签到,获得积分10
1秒前
1秒前
合适耳机发布了新的文献求助10
1秒前
1秒前
牡丹花下发布了新的文献求助10
1秒前
2秒前
8R60d8应助风feng采纳,获得10
4秒前
无误完成签到,获得积分10
4秒前
5秒前
CodeCraft应助欢喜风采纳,获得10
5秒前
嘻嘻发布了新的文献求助10
5秒前
7秒前
正直丹寒发布了新的文献求助10
7秒前
圆圈应助小学生采纳,获得10
8秒前
无误发布了新的文献求助50
9秒前
9秒前
Singularity应助Rose采纳,获得20
11秒前
TT完成签到,获得积分10
11秒前
缥缈的芷卉完成签到,获得积分20
11秒前
晓凡完成签到,获得积分10
13秒前
windyhill完成签到,获得积分10
13秒前
舍得完成签到,获得积分10
13秒前
玉婷完成签到,获得积分10
14秒前
等风来1234发布了新的文献求助10
14秒前
yyw驳回了情怀应助
15秒前
oaim完成签到,获得积分10
16秒前
Soleil发布了新的文献求助10
16秒前
aDou发布了新的文献求助10
16秒前
黎黎原上草完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
牡丹花下完成签到 ,获得积分10
17秒前
叶落孤城发布了新的文献求助10
17秒前
听话的十三完成签到,获得积分10
18秒前
yu001完成签到,获得积分10
18秒前
18秒前
梦游游游完成签到,获得积分10
19秒前
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260