EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features

脑电图 模式识别(心理学) 人工智能 计算机科学 支持向量机 判别式 特征选择 语音识别 面部识别系统 特征提取 微分熵 脑-机接口 心理学 雷诺熵 最大熵原理 神经科学
作者
Guoyang Liu,Yiming Wen,Janet H. Hsiao,Defei Zhang,Tian Lan,Weidong Zhou
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 44-55
标识
DOI:10.1109/thms.2023.3332209
摘要

The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time–frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain–computer interface for EEG-based face recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
victor完成签到,获得积分10
2秒前
尘扬发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
迷路雨寒应助111采纳,获得20
3秒前
健壮熊猫发布了新的文献求助10
4秒前
mm发布了新的文献求助10
4秒前
psycho完成签到,获得积分10
4秒前
可爱的函函应助悲伤牛蛙采纳,获得10
4秒前
Orange应助hui采纳,获得10
4秒前
sakiecon完成签到,获得积分10
5秒前
yu风应助科研通管家采纳,获得10
5秒前
xlx应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
xlx应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得30
5秒前
共享精神应助科研通管家采纳,获得30
5秒前
5秒前
xlx应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
xlx应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
xlx应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
xlx应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
yznfly给123的求助进行了留言
12秒前
shl完成签到,获得积分10
12秒前
12秒前
在水一方应助mm采纳,获得10
13秒前
fly完成签到,获得积分10
14秒前
kxy0311完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851