A CT-based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture

医学 接收机工作特性 髋部骨折 断裂(地质) 射线照相术 回顾性队列研究 外科 核医学 内科学 骨质疏松症 工程类 岩土工程
作者
Yisak Kim,Young-Gon Kim,Jung-Wee Park,Byung Woo Kim,Youmin Shin,Sung Hye Kong,Jung Hee Kim,Young‐Kyun Lee,Sang Wan Kim,Chan Soo Shin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1): e230614-e230614 被引量:25
标识
DOI:10.1148/radiol.230614
摘要

Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired t test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59-0.70 for five of six models; P value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57-0.71 for five of six models; P value range, < .001 to < .05) and 3 years (AUC range, 0.55-0.72 for four of six models; P value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; P < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Li and Jaremko in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1111发布了新的文献求助30
4秒前
木子李发布了新的文献求助10
4秒前
去看星星呀完成签到,获得积分10
4秒前
fkwwdamocles完成签到,获得积分10
4秒前
6秒前
6秒前
wowser发布了新的文献求助10
6秒前
7秒前
幽默厉发布了新的文献求助10
7秒前
顾矜应助可爱半山采纳,获得10
8秒前
希望天下0贩的0应助lucky采纳,获得10
8秒前
tang发布了新的文献求助10
10秒前
Pudding发布了新的文献求助20
11秒前
Owen应助MORNING采纳,获得10
12秒前
12秒前
mzhnx发布了新的文献求助10
12秒前
小蘑菇应助kongxiaofan采纳,获得10
13秒前
14秒前
小马甲应助奇异果熊猫人采纳,获得10
14秒前
dae完成签到 ,获得积分10
14秒前
18秒前
wy.he发布了新的文献求助10
18秒前
1111完成签到,获得积分20
18秒前
19秒前
joyee完成签到,获得积分10
19秒前
CipherSage应助兔子不秃头y采纳,获得10
20秒前
20秒前
轻松戎发布了新的文献求助10
20秒前
22秒前
23秒前
23秒前
23秒前
xiaohaohao关注了科研通微信公众号
24秒前
丘比特应助okay1123采纳,获得10
25秒前
不倦发布了新的文献求助10
26秒前
26秒前
Yan1961发布了新的文献求助10
27秒前
27秒前
orixero应助lllmmmzzz采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493