A CT-based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture

医学 接收机工作特性 髋部骨折 断裂(地质) 射线照相术 回顾性队列研究 外科 核医学 内科学 骨质疏松症 工程类 岩土工程
作者
Yisak Kim,Young-Gon Kim,Jung-Wee Park,Byung Woo Kim,Youmin Shin,Sung Hye Kong,Jung Hee Kim,Young‐Kyun Lee,Sang Wan Kim,Chan Soo Shin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1) 被引量:9
标识
DOI:10.1148/radiol.230614
摘要

Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired t test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59–0.70 for five of six models; P value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57–0.71 for five of six models; P value range, < .001 to < .05) and 3 years (AUC range, 0.55–0.72 for four of six models; P value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; P < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Li and Jaremko in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇哇哇哇完成签到,获得积分20
1秒前
在水一方应助yulian采纳,获得10
1秒前
2秒前
王金娥完成签到,获得积分10
2秒前
科研通AI2S应助小七采纳,获得10
2秒前
3秒前
啊吖吖吖吖吖完成签到,获得积分20
4秒前
爱听歌电灯胆完成签到 ,获得积分10
5秒前
火爆辣椒完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
xiachengcs发布了新的文献求助30
9秒前
爱lx发布了新的文献求助10
9秒前
荀万声发布了新的文献求助10
10秒前
王一一发布了新的文献求助10
11秒前
yulian发布了新的文献求助10
13秒前
Letter发布了新的文献求助10
13秒前
wanci应助xiachengcs采纳,获得30
14秒前
14秒前
Jasper应助云雨采纳,获得10
14秒前
小七发布了新的文献求助10
15秒前
会飞舞的熊完成签到 ,获得积分10
15秒前
17秒前
乐666发布了新的文献求助10
18秒前
毛头发布了新的文献求助50
18秒前
hoax完成签到 ,获得积分20
18秒前
莎莎发布了新的文献求助10
19秒前
祖白易完成签到,获得积分10
19秒前
19秒前
阿狐完成签到,获得积分10
21秒前
我是老大应助博修采纳,获得30
21秒前
单纯沐沐完成签到,获得积分10
22秒前
贪玩若蕊发布了新的文献求助10
22秒前
xuexue发布了新的文献求助10
22秒前
研友_VZG7GZ应助莎莎采纳,获得10
26秒前
gaberella完成签到,获得积分10
27秒前
梅卡完成签到 ,获得积分10
28秒前
hzh完成签到 ,获得积分10
28秒前
毛头完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578