A CT-based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture

医学 接收机工作特性 髋部骨折 断裂(地质) 射线照相术 回顾性队列研究 外科 核医学 内科学 骨质疏松症 岩土工程 工程类
作者
Yisak Kim,Young-Gon Kim,Jung-Wee Park,Byung Woo Kim,Youmin Shin,Sung Hye Kong,Jung Hee Kim,Young‐Kyun Lee,Sang Wan Kim,Chan Soo Shin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1) 被引量:2
标识
DOI:10.1148/radiol.230614
摘要

Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired t test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59–0.70 for five of six models; P value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57–0.71 for five of six models; P value range, < .001 to < .05) and 3 years (AUC range, 0.55–0.72 for four of six models; P value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; P < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Li and Jaremko in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的紫菜应助星星采纳,获得10
刚刚
1秒前
huangsongsong完成签到,获得积分20
3秒前
科研通AI2S应助害怕的擎宇采纳,获得10
3秒前
orixero应助林子采纳,获得10
3秒前
4秒前
binglangcha发布了新的文献求助10
4秒前
这是一个昵称完成签到,获得积分10
5秒前
5秒前
星辰大海应助缓缓矛盾体采纳,获得10
5秒前
6秒前
汉堡包应助李振华采纳,获得10
6秒前
小赞发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
xiaoGuo应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Mr发布了新的文献求助10
10秒前
lysixsixsix完成签到,获得积分10
11秒前
婳祎完成签到 ,获得积分10
11秒前
尊敬的yy完成签到,获得积分10
11秒前
tuotuo发布了新的文献求助10
12秒前
hh完成签到,获得积分10
12秒前
13秒前
醉熏的荣轩完成签到,获得积分20
14秒前
Anqi完成签到 ,获得积分10
14秒前
15秒前
cd发布了新的文献求助10
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226