A CT-based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture

医学 接收机工作特性 髋部骨折 断裂(地质) 射线照相术 回顾性队列研究 外科 核医学 内科学 骨质疏松症 岩土工程 工程类
作者
Yisak Kim,Young-Gon Kim,Jung-Wee Park,Byung Woo Kim,Youmin Shin,Sung Hye Kong,Jung Hee Kim,Young‐Kyun Lee,Sang Wan Kim,Chan Soo Shin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1) 被引量:5
标识
DOI:10.1148/radiol.230614
摘要

Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired t test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59–0.70 for five of six models; P value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57–0.71 for five of six models; P value range, < .001 to < .05) and 3 years (AUC range, 0.55–0.72 for four of six models; P value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; P < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Li and Jaremko in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
亓亓完成签到 ,获得积分10
1秒前
1秒前
phz发布了新的文献求助10
2秒前
2秒前
Stephen完成签到,获得积分10
2秒前
shengChen完成签到,获得积分10
2秒前
2秒前
怎么睡不醒完成签到 ,获得积分10
2秒前
CipherSage应助沉静的迎荷采纳,获得10
3秒前
彩色铅笔完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
淡定的思松应助通~采纳,获得10
4秒前
ycp完成签到,获得积分10
4秒前
wanci应助cc采纳,获得10
4秒前
泽烺木完成签到,获得积分10
4秒前
duizhang完成签到,获得积分10
4秒前
简单茗发布了新的文献求助10
5秒前
5秒前
DAYTOY应助LJL采纳,获得10
6秒前
qianf完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Zn应助ZZZpp采纳,获得10
7秒前
脑洞疼应助喵呜采纳,获得10
8秒前
Monik发布了新的文献求助10
8秒前
花开米兰城完成签到,获得积分10
8秒前
18485649437完成签到 ,获得积分10
8秒前
dyh6802发布了新的文献求助10
8秒前
浅梦完成签到,获得积分10
9秒前
费米子完成签到,获得积分20
9秒前
宜一发布了新的文献求助10
10秒前
10秒前
10秒前
小马甲应助惠惠采纳,获得10
10秒前
wangyang完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794