Short-Term Electricity Load Forecasting Based on Ensemble Empirical Mode Decomposition and Long Short-Term Memory Neural Network

期限(时间) 人工神经网络 短时记忆 希尔伯特-黄变换 计算机科学 模式(计算机接口) 分解 人工智能 循环神经网络 电信 生态学 物理 白噪声 量子力学 生物 操作系统
作者
Haiyan Xu,Yong Zhang,Yong Zhao
出处
期刊:2019 IEEE International Conference on Energy Internet (ICEI) 卷期号:: 271-275
标识
DOI:10.1109/icei60179.2023.00058
摘要

Electricity load forecasting forms a basis for planning and economic operation of power systems, so accurate load forecasting is conducive to improving the safety and stability thereof, however, owing to load data being non-linear and fluctuating, electricity load forecasting is difficult. Therefore, a novel hybrid model based on ensemble empirical mode decomposition (EEMD) and long short-term memory neural network (LSTM), namely the EEMD-LSTM model was proposed to forecast short-term electricity load. Firstly, by using EEMD, the original load series was broken down into a residual error component (Re) and a sequence of intrinsic mode functions (IMFs) with varying frequencies. So converting the load series into a series that is comparatively stationary. High similarity components were aggregated using the sample entropy (SE) approach in order to simplify the model. Then, by using an LSTM method suitable for processing time series problem, appropriate forecasting models were established for each group of components and the sum of the forecast values of each sub-model was the initial forecast value. The final forecast value of load was the sum of initial forecast value and forecasting errors. Finally, electricity loads of a city in Liaoning Province, China in spring, summer, autumn, and winter were predicted. The model suggested in this study outperforms the other ten forecasting techniques in terms of performance and has less statistical errors, which raises the accuracy of electricity load forecasting, according to the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无聊的太清完成签到,获得积分10
1秒前
vivi发布了新的文献求助10
1秒前
小二郎应助泯珉采纳,获得10
2秒前
breath完成签到 ,获得积分10
3秒前
啊娴仔完成签到,获得积分10
3秒前
Grandir完成签到 ,获得积分10
3秒前
3秒前
椰子完成签到 ,获得积分10
3秒前
满意沛槐发布了新的文献求助10
4秒前
隐形曼青应助DYZ采纳,获得10
5秒前
田様应助天真的眼神采纳,获得10
6秒前
科研通AI5应助研友_Lmg01Z采纳,获得10
9秒前
bkagyin应助自信紫青采纳,获得20
11秒前
findmoon完成签到 ,获得积分10
11秒前
12秒前
gushang强完成签到,获得积分10
12秒前
彭于晏应助小李采纳,获得10
14秒前
15秒前
jsq发布了新的文献求助10
16秒前
kkkk完成签到 ,获得积分10
17秒前
18秒前
齐路明发布了新的文献求助10
19秒前
19秒前
TNNTDS完成签到,获得积分20
19秒前
CMC发布了新的文献求助10
19秒前
lida发布了新的文献求助10
21秒前
21秒前
22秒前
DYZ发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
皮皮发布了新的文献求助10
25秒前
26秒前
26秒前
英姑应助ihuhiu采纳,获得10
28秒前
ZQ发布了新的文献求助10
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526144
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280744
捐赠科研通 2804127
什么是DOI,文献DOI怎么找? 1539278
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709495