The Role of cfDNA Biomarkers and Patient Data in the Early Prediction of Preeclampsia: Artificial Intelligence Model

医学 子痫前期 产科 怀孕 遗传学 生物
作者
Asma Khalil,Giovanni Bellesia,Mary E. Norton,Bo Jacobsson,Sina Haeri,Melissa Egbert,Fergal D. Malone,Ronald J. Wapner,Ashley S. Roman,Revital Faro,Rajeevi Madankumar,Noel Strong,Robert M. Silver,Nidhi Vohra,Jon Hyett,Cora MacPherson,Brittany Prigmore,Ebad Ahmed,Zach Demko,J. Bryce Ortiz,Vivienne Souter,P. Dar
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
标识
DOI:10.1016/j.ajog.2024.02.299
摘要

Objective Accurate individualized assessment of preeclampsia risk enables the identification of patients most likely to benefit from initiation of low-dose aspirin at 12-16 weeks' gestation when there is evidence for its effectiveness, as well as guiding appropriate pregnancy care pathways and surveillance. The primary objective of this study was to evaluate the performance of artificial neural network models for the prediction of preterm preeclampsia (<37 weeks' gestation) using patient characteristics available at the first antenatal visit and data from prenatal cell-free DNA (cfDNA) screening. Secondary outcomes were prediction of early onset preeclampsia (<34 weeks' gestation) and term preeclampsia (≥37 weeks' gestation). Methods This secondary analysis of a prospective, multicenter, observational prenatal cfDNA screening study (SMART) included singleton pregnancies with known pregnancy outcomes. Thirteen patient characteristics that are routinely collected at the first prenatal visit and two characteristics of cfDNA, total cfDNA and fetal fraction (FF), were used to develop predictive models for early-onset (<34 weeks), preterm (<37 weeks), and term (≥37 weeks) preeclampsia. For the models, the 'reference' classifier was a shallow logistic regression (LR) model. We also explored several feedforward (non-linear) neural network (NN) architectures with one or more hidden layers and compared their performance with the LR model. We selected a simple NN model built with one hidden layer and made up of 15 units. Results Of 17,520 participants included in the final analysis, 72 (0.4%) developed early onset, 251 (1.4%) preterm, and 420 (2.4%) term preeclampsia. Median gestational age at cfDNA measurement was 12.6 weeks and 2,155 (12.3%) had their cfDNA measurement at 16 weeks' gestation or greater. Preeclampsia was associated with higher total cfDNA (median 362.3 versus 339.0 copies/ml cfDNA; p<0.001) and lower FF (median 7.5% versus 9.4%; p<0.001). The expected, cross-validated area under the curve (AUC) scores for early onset, preterm, and term preeclampsia were 0.782, 0.801, and 0.712, respectively for the LR model, and 0.797, 0.800, and 0.713, respectively for the NN model. At a screen-positive rate of 15%, sensitivity for preterm preeclampsia was 58.4% (95% CI 0.569, 0.599) for the LR model and 59.3% (95% CI 0.578, 0.608) for the NN model.The contribution of both total cfDNA and FF to the prediction of term and preterm preeclampsia was negligible. For early-onset preeclampsia, removal of the total cfDNA and FF features from the NN model was associated with a 6.9% decrease in sensitivity at a 15% screen positive rate, from 54.9% (95% CI 52.9-56.9) to 48.0% (95% CI 45.0-51.0). Conclusion Routinely available patient characteristics and cfDNA markers can be used to predict preeclampsia with performance comparable to other patient characteristic models for the prediction of preterm preeclampsia. Both LR and NN models showed similar performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的败发布了新的文献求助10
刚刚
语物发布了新的文献求助10
刚刚
lvy发布了新的文献求助10
刚刚
2秒前
深情安青应助XCHI采纳,获得10
2秒前
tqy完成签到,获得积分10
3秒前
orixero应助小橘子采纳,获得10
3秒前
宝宝发布了新的文献求助10
4秒前
ta发布了新的文献求助10
6秒前
天天快乐应助外向的慕灵采纳,获得10
7秒前
8秒前
缓慢的败完成签到,获得积分10
8秒前
8秒前
董海涛发布了新的文献求助10
9秒前
李健的小迷弟应助6小瓶子采纳,获得10
10秒前
往返发布了新的文献求助10
13秒前
13秒前
彭于晏应助Ginkgo采纳,获得10
13秒前
宝宝完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
无忧sxt完成签到 ,获得积分10
16秒前
16秒前
方勇飞发布了新的文献求助10
17秒前
秋秋完成签到,获得积分10
18秒前
EBA发布了新的文献求助10
19秒前
复杂的箴发布了新的文献求助10
20秒前
tqy发布了新的文献求助10
20秒前
23秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
科研通AI5应助往返采纳,获得10
27秒前
张三发布了新的文献求助10
29秒前
林美清发布了新的文献求助10
32秒前
34秒前
琉璃完成签到,获得积分10
36秒前
37秒前
39秒前
自然伟宸完成签到,获得积分20
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182