The Role of cfDNA Biomarkers and Patient Data in the Early Prediction of Preeclampsia: Artificial Intelligence Model

医学 子痫前期 产科 怀孕 遗传学 生物
作者
Asma Khalil,Giovanni Bellesia,Mary E. Norton,Bo Jacobsson,Sina Haeri,Melissa Egbert,Fergal D. Malone,Ronald J. Wapner,Ashley S. Roman,Revital Faro,Rajeevi Madankumar,Noel Strong,Robert M. Silver,Nidhi Vohra,Jon Hyett,Cora MacPherson,Brittany Prigmore,Ebad Ahmed,Zach Demko,J. Bryce Ortiz,Vivienne Souter,P. Dar
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
标识
DOI:10.1016/j.ajog.2024.02.299
摘要

Objective Accurate individualized assessment of preeclampsia risk enables the identification of patients most likely to benefit from initiation of low-dose aspirin at 12-16 weeks' gestation when there is evidence for its effectiveness, as well as guiding appropriate pregnancy care pathways and surveillance. The primary objective of this study was to evaluate the performance of artificial neural network models for the prediction of preterm preeclampsia (<37 weeks' gestation) using patient characteristics available at the first antenatal visit and data from prenatal cell-free DNA (cfDNA) screening. Secondary outcomes were prediction of early onset preeclampsia (<34 weeks' gestation) and term preeclampsia (≥37 weeks' gestation). Methods This secondary analysis of a prospective, multicenter, observational prenatal cfDNA screening study (SMART) included singleton pregnancies with known pregnancy outcomes. Thirteen patient characteristics that are routinely collected at the first prenatal visit and two characteristics of cfDNA, total cfDNA and fetal fraction (FF), were used to develop predictive models for early-onset (<34 weeks), preterm (<37 weeks), and term (≥37 weeks) preeclampsia. For the models, the 'reference' classifier was a shallow logistic regression (LR) model. We also explored several feedforward (non-linear) neural network (NN) architectures with one or more hidden layers and compared their performance with the LR model. We selected a simple NN model built with one hidden layer and made up of 15 units. Results Of 17,520 participants included in the final analysis, 72 (0.4%) developed early onset, 251 (1.4%) preterm, and 420 (2.4%) term preeclampsia. Median gestational age at cfDNA measurement was 12.6 weeks and 2,155 (12.3%) had their cfDNA measurement at 16 weeks' gestation or greater. Preeclampsia was associated with higher total cfDNA (median 362.3 versus 339.0 copies/ml cfDNA; p<0.001) and lower FF (median 7.5% versus 9.4%; p<0.001). The expected, cross-validated area under the curve (AUC) scores for early onset, preterm, and term preeclampsia were 0.782, 0.801, and 0.712, respectively for the LR model, and 0.797, 0.800, and 0.713, respectively for the NN model. At a screen-positive rate of 15%, sensitivity for preterm preeclampsia was 58.4% (95% CI 0.569, 0.599) for the LR model and 59.3% (95% CI 0.578, 0.608) for the NN model.The contribution of both total cfDNA and FF to the prediction of term and preterm preeclampsia was negligible. For early-onset preeclampsia, removal of the total cfDNA and FF features from the NN model was associated with a 6.9% decrease in sensitivity at a 15% screen positive rate, from 54.9% (95% CI 52.9-56.9) to 48.0% (95% CI 45.0-51.0). Conclusion Routinely available patient characteristics and cfDNA markers can be used to predict preeclampsia with performance comparable to other patient characteristic models for the prediction of preterm preeclampsia. Both LR and NN models showed similar performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的迎荷完成签到,获得积分10
1秒前
天天快乐应助BreezyGallery采纳,获得10
2秒前
2秒前
2秒前
FashionBoy应助MailkMonk采纳,获得10
3秒前
clm发布了新的文献求助10
4秒前
逢强必赢完成签到,获得积分10
4秒前
科研通AI2S应助开朗的慕儿采纳,获得10
4秒前
4秒前
蒋若风发布了新的文献求助10
4秒前
三番又六次完成签到 ,获得积分10
5秒前
纷花雨发布了新的文献求助10
5秒前
友好的以旋完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
小赞芽完成签到,获得积分10
6秒前
LUMOS完成签到,获得积分10
6秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
7秒前
7秒前
yuyu完成签到,获得积分10
7秒前
落落发布了新的文献求助10
7秒前
8秒前
爱喝冰可乐完成签到,获得积分20
9秒前
jia完成签到,获得积分10
9秒前
传奇3应助HopeStar采纳,获得10
10秒前
liike发布了新的文献求助10
10秒前
melodyezi完成签到,获得积分20
10秒前
要开心完成签到,获得积分10
10秒前
喜洋洋完成签到,获得积分20
10秒前
11秒前
12秒前
cc完成签到,获得积分20
12秒前
科目三应助芋圆Z.采纳,获得10
13秒前
情怀应助Tonson采纳,获得10
13秒前
13秒前
Tutusamo完成签到 ,获得积分10
13秒前
无限的隶发布了新的文献求助10
13秒前
科目三应助Yeong采纳,获得10
13秒前
Ll发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759