The Role of cfDNA Biomarkers and Patient Data in the Early Prediction of Preeclampsia: Artificial Intelligence Model

医学 子痫前期 产科 怀孕 遗传学 生物
作者
Asma Khalil,Giovanni Bellesia,Mary E. Norton,Bo Jacobsson,Sina Haeri,Melissa Egbert,Fergal D. Malone,Ronald J. Wapner,Ashley S. Roman,Revital Faro,Rajeevi Madankumar,Noel Strong,Robert M. Silver,Nidhi Vohra,Jon Hyett,Cora MacPherson,Brittany Prigmore,Ebad Ahmed,Zach Demko,J. Bryce Ortiz,Vivienne Souter,P. Dar
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
标识
DOI:10.1016/j.ajog.2024.02.299
摘要

Objective Accurate individualized assessment of preeclampsia risk enables the identification of patients most likely to benefit from initiation of low-dose aspirin at 12-16 weeks' gestation when there is evidence for its effectiveness, as well as guiding appropriate pregnancy care pathways and surveillance. The primary objective of this study was to evaluate the performance of artificial neural network models for the prediction of preterm preeclampsia (<37 weeks' gestation) using patient characteristics available at the first antenatal visit and data from prenatal cell-free DNA (cfDNA) screening. Secondary outcomes were prediction of early onset preeclampsia (<34 weeks' gestation) and term preeclampsia (≥37 weeks' gestation). Methods This secondary analysis of a prospective, multicenter, observational prenatal cfDNA screening study (SMART) included singleton pregnancies with known pregnancy outcomes. Thirteen patient characteristics that are routinely collected at the first prenatal visit and two characteristics of cfDNA, total cfDNA and fetal fraction (FF), were used to develop predictive models for early-onset (<34 weeks), preterm (<37 weeks), and term (≥37 weeks) preeclampsia. For the models, the 'reference' classifier was a shallow logistic regression (LR) model. We also explored several feedforward (non-linear) neural network (NN) architectures with one or more hidden layers and compared their performance with the LR model. We selected a simple NN model built with one hidden layer and made up of 15 units. Results Of 17,520 participants included in the final analysis, 72 (0.4%) developed early onset, 251 (1.4%) preterm, and 420 (2.4%) term preeclampsia. Median gestational age at cfDNA measurement was 12.6 weeks and 2,155 (12.3%) had their cfDNA measurement at 16 weeks' gestation or greater. Preeclampsia was associated with higher total cfDNA (median 362.3 versus 339.0 copies/ml cfDNA; p<0.001) and lower FF (median 7.5% versus 9.4%; p<0.001). The expected, cross-validated area under the curve (AUC) scores for early onset, preterm, and term preeclampsia were 0.782, 0.801, and 0.712, respectively for the LR model, and 0.797, 0.800, and 0.713, respectively for the NN model. At a screen-positive rate of 15%, sensitivity for preterm preeclampsia was 58.4% (95% CI 0.569, 0.599) for the LR model and 59.3% (95% CI 0.578, 0.608) for the NN model.The contribution of both total cfDNA and FF to the prediction of term and preterm preeclampsia was negligible. For early-onset preeclampsia, removal of the total cfDNA and FF features from the NN model was associated with a 6.9% decrease in sensitivity at a 15% screen positive rate, from 54.9% (95% CI 52.9-56.9) to 48.0% (95% CI 45.0-51.0). Conclusion Routinely available patient characteristics and cfDNA markers can be used to predict preeclampsia with performance comparable to other patient characteristic models for the prediction of preterm preeclampsia. Both LR and NN models showed similar performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙袋完成签到,获得积分10
6秒前
明理的小蜜蜂完成签到 ,获得积分10
16秒前
小二郎完成签到 ,获得积分10
24秒前
huangqian完成签到,获得积分10
25秒前
橘子完成签到 ,获得积分10
31秒前
杏梨完成签到,获得积分10
31秒前
34秒前
安静成威完成签到 ,获得积分10
36秒前
沙袋关注了科研通微信公众号
37秒前
iShine完成签到 ,获得积分10
37秒前
满城烟沙完成签到 ,获得积分10
37秒前
xuaotian发布了新的文献求助10
40秒前
chhzz完成签到 ,获得积分10
48秒前
Night完成签到,获得积分10
49秒前
轩辕书白完成签到,获得积分10
50秒前
沙袋发布了新的文献求助10
50秒前
不辞完成签到 ,获得积分10
57秒前
58秒前
114555完成签到,获得积分10
1分钟前
飘逸的威发布了新的文献求助10
1分钟前
英喆完成签到 ,获得积分10
1分钟前
快乐的土土完成签到 ,获得积分10
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
小红完成签到 ,获得积分10
1分钟前
1分钟前
飘逸的威发布了新的文献求助10
1分钟前
Sulin完成签到 ,获得积分10
1分钟前
快乐的花果山完成签到,获得积分10
1分钟前
李金奥完成签到 ,获得积分10
1分钟前
1分钟前
Milo完成签到,获得积分10
1分钟前
lllwww完成签到 ,获得积分10
1分钟前
活泼新儿完成签到 ,获得积分10
1分钟前
yinyin完成签到 ,获得积分10
1分钟前
执着易形完成签到 ,获得积分10
1分钟前
Olsters完成签到 ,获得积分10
1分钟前
执意完成签到 ,获得积分10
1分钟前
xzy998完成签到,获得积分0
1分钟前
和平使命应助科研通管家采纳,获得30
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137058
求助须知:如何正确求助?哪些是违规求助? 2788032
关于积分的说明 7784326
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010