The Role of cfDNA Biomarkers and Patient Data in the Early Prediction of Preeclampsia: Artificial Intelligence Model

医学 子痫前期 产科 怀孕 遗传学 生物
作者
Asma Khalil,Giovanni Bellesia,Mary E. Norton,Bo Jacobsson,Sina Haeri,Melissa Egbert,Fergal D. Malone,Ronald J. Wapner,Ashley S. Roman,Revital Faro,Rajeevi Madankumar,Noel Strong,Robert M. Silver,Nidhi Vohra,Jon Hyett,Cora MacPherson,Brittany Prigmore,Ebad Ahmed,Zach Demko,J. Bryce Ortiz,Vivienne Souter,P. Dar
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
标识
DOI:10.1016/j.ajog.2024.02.299
摘要

Objective Accurate individualized assessment of preeclampsia risk enables the identification of patients most likely to benefit from initiation of low-dose aspirin at 12-16 weeks' gestation when there is evidence for its effectiveness, as well as guiding appropriate pregnancy care pathways and surveillance. The primary objective of this study was to evaluate the performance of artificial neural network models for the prediction of preterm preeclampsia (<37 weeks' gestation) using patient characteristics available at the first antenatal visit and data from prenatal cell-free DNA (cfDNA) screening. Secondary outcomes were prediction of early onset preeclampsia (<34 weeks' gestation) and term preeclampsia (≥37 weeks' gestation). Methods This secondary analysis of a prospective, multicenter, observational prenatal cfDNA screening study (SMART) included singleton pregnancies with known pregnancy outcomes. Thirteen patient characteristics that are routinely collected at the first prenatal visit and two characteristics of cfDNA, total cfDNA and fetal fraction (FF), were used to develop predictive models for early-onset (<34 weeks), preterm (<37 weeks), and term (≥37 weeks) preeclampsia. For the models, the 'reference' classifier was a shallow logistic regression (LR) model. We also explored several feedforward (non-linear) neural network (NN) architectures with one or more hidden layers and compared their performance with the LR model. We selected a simple NN model built with one hidden layer and made up of 15 units. Results Of 17,520 participants included in the final analysis, 72 (0.4%) developed early onset, 251 (1.4%) preterm, and 420 (2.4%) term preeclampsia. Median gestational age at cfDNA measurement was 12.6 weeks and 2,155 (12.3%) had their cfDNA measurement at 16 weeks' gestation or greater. Preeclampsia was associated with higher total cfDNA (median 362.3 versus 339.0 copies/ml cfDNA; p<0.001) and lower FF (median 7.5% versus 9.4%; p<0.001). The expected, cross-validated area under the curve (AUC) scores for early onset, preterm, and term preeclampsia were 0.782, 0.801, and 0.712, respectively for the LR model, and 0.797, 0.800, and 0.713, respectively for the NN model. At a screen-positive rate of 15%, sensitivity for preterm preeclampsia was 58.4% (95% CI 0.569, 0.599) for the LR model and 59.3% (95% CI 0.578, 0.608) for the NN model.The contribution of both total cfDNA and FF to the prediction of term and preterm preeclampsia was negligible. For early-onset preeclampsia, removal of the total cfDNA and FF features from the NN model was associated with a 6.9% decrease in sensitivity at a 15% screen positive rate, from 54.9% (95% CI 52.9-56.9) to 48.0% (95% CI 45.0-51.0). Conclusion Routinely available patient characteristics and cfDNA markers can be used to predict preeclampsia with performance comparable to other patient characteristic models for the prediction of preterm preeclampsia. Both LR and NN models showed similar performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo应助yihoxu采纳,获得10
刚刚
zhazd完成签到,获得积分10
刚刚
刘佳灏发布了新的文献求助10
刚刚
洪荒爆发完成签到,获得积分10
1秒前
瞿访云完成签到,获得积分10
1秒前
1秒前
明明鸣完成签到,获得积分10
2秒前
钮凡蕾发布了新的文献求助10
2秒前
3秒前
3秒前
动听千风完成签到 ,获得积分10
3秒前
凌代萱发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
今后应助Micahaeler采纳,获得10
4秒前
狂野白梅完成签到,获得积分10
5秒前
iNk应助可可采纳,获得10
6秒前
无花果应助巴巴爸爸采纳,获得10
6秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
明明鸣发布了新的文献求助10
7秒前
刘佳灏完成签到,获得积分10
7秒前
7秒前
ccccc关注了科研通微信公众号
9秒前
ExtroGod发布了新的文献求助10
10秒前
10秒前
在水一方应助dan1029采纳,获得10
11秒前
深情安青应助dan1029采纳,获得10
11秒前
可爱的函函应助dan1029采纳,获得10
11秒前
小编一枚完成签到 ,获得积分10
11秒前
LLLLLL完成签到,获得积分10
11秒前
无花果应助dan1029采纳,获得10
12秒前
传奇3应助dan1029采纳,获得10
12秒前
小二郎应助dan1029采纳,获得10
12秒前
悦耳的小夏完成签到,获得积分20
12秒前
英俊的铭应助刘老师采纳,获得10
13秒前
脑洞疼应助巧克力采纳,获得10
13秒前
彭于晏应助dan1029采纳,获得10
13秒前
13秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082258
求助须知:如何正确求助?哪些是违规求助? 2735476
关于积分的说明 7537620
捐赠科研通 2385156
什么是DOI,文献DOI怎么找? 1264678
科研通“疑难数据库(出版商)”最低求助积分说明 612700
版权声明 597623