Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission

降钙素原 医学 败血症 重症监护室 接收机工作特性 平均红细胞体积 全血细胞计数 内科学 急诊医学 红细胞压积
作者
Daniel Steinbach,Paul C. Ahrens,Maria Schmidt,Martin Federbusch,Lara Heuft,Christoph Lübbert,Matthias Nauck,Matthias Gründling,Berend Isermann,Sebastian Gibb,Thorsten Kaiser
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (3): 506-515 被引量:5
标识
DOI:10.1093/clinchem/hvae001
摘要

Abstract Background Timely diagnosis is crucial for sepsis treatment. Current machine learning (ML) models suffer from high complexity and limited applicability. We therefore created an ML model using only complete blood count (CBC) diagnostics. Methods We collected non-intensive care unit (non-ICU) data from a German tertiary care centre (January 2014 to December 2021). Using patient age, sex, and CBC parameters (haemoglobin, platelets, mean corpuscular volume, white and red blood cells), we trained a boosted random forest, which predicts sepsis with ICU admission. Two external validations were conducted using data from another German tertiary care centre and the Medical Information Mart for Intensive Care IV database (MIMIC-IV). Using the subset of laboratory orders also including procalcitonin (PCT), an analogous model was trained with PCT as an additional feature. Results After exclusion, 1 381 358 laboratory requests (2016 from sepsis cases) were available. The CBC model shows an area under the receiver operating characteristic (AUROC) of 0.872 (95% CI, 0.857–0.887). External validations show AUROCs of 0.805 (95% CI, 0.787–0.824) for University Medicine Greifswald and 0.845 (95% CI, 0.837–0.852) for MIMIC-IV. The model including PCT revealed a significantly higher AUROC (0.857; 95% CI, 0.836–0.877) than PCT alone (0.790; 95% CI, 0.759–0.821; P < 0.001). Conclusions Our results demonstrate that routine CBC results could significantly improve diagnosis of sepsis when combined with ML. The CBC model can facilitate early sepsis prediction in non-ICU patients with high robustness in external validations. Its implementation in clinical decision support systems has strong potential to provide an essential time advantage and increase patient safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特发布了新的文献求助10
刚刚
匆匆完成签到,获得积分10
1秒前
1秒前
隐形曼青应助JxJ采纳,获得10
2秒前
zz完成签到,获得积分20
3秒前
5秒前
酷波er应助qqy采纳,获得10
6秒前
HH完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助阿孝采纳,获得10
8秒前
万能图书馆应助zz采纳,获得10
8秒前
CipherSage应助天行健采纳,获得10
9秒前
10秒前
小蘑菇应助大大大大发采纳,获得10
10秒前
儒雅的冬易完成签到,获得积分10
11秒前
啵咛发布了新的文献求助10
11秒前
13秒前
薰硝壤应助阿巴阿巴小聂采纳,获得30
13秒前
HH发布了新的文献求助20
13秒前
JamesPei应助兔兔采纳,获得10
14秒前
能干的雨完成签到 ,获得积分10
14秒前
wanci应助戴戴采纳,获得10
16秒前
小C关注了科研通微信公众号
17秒前
大大大大发完成签到,获得积分20
17秒前
科研通AI2S应助setmefree采纳,获得10
17秒前
丘比特应助sx采纳,获得10
18秒前
19秒前
Tomice驳回了sss555应助
20秒前
英姑应助丰富的慕卉采纳,获得10
22秒前
23秒前
彩色嚣完成签到 ,获得积分10
24秒前
Xxynysmhxs完成签到 ,获得积分10
24秒前
24秒前
阿孝发布了新的文献求助10
25秒前
西吴完成签到 ,获得积分10
25秒前
27秒前
27秒前
科研通AI2S应助自转无风采纳,获得10
28秒前
28秒前
迷茫的一代完成签到,获得积分10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140718
求助须知:如何正确求助?哪些是违规求助? 2791628
关于积分的说明 7799729
捐赠科研通 2447921
什么是DOI,文献DOI怎么找? 1302210
科研通“疑难数据库(出版商)”最低求助积分说明 626473
版权声明 601194