AANet: An Ambiguity-Aware Network for Remote-Sensing Image Change Detection

遥感 计算机科学 变更检测 模棱两可 图像(数学) 计算机视觉 人工智能 地质学 程序设计语言
作者
Renlong Hang,Siqi Xu,Panli Yuan,Qingshan Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:12
标识
DOI:10.1109/tgrs.2024.3371463
摘要

Remote sensing image change detection (CD) task plays an important role in land-use survey, city construction investigation and other vital industries. Recently, deep learning has become a mainstream method for this task due to its satisfactory performance in most cases. However, it often suffers from difficulties in dealing with ambiguity regions, where pseudo-changes happen or real changes are corrupted. In this article, we propose an ambiguity-aware network (AANet) to address the aforementioned issue. Specifically, our network firstly adopts convolutional layers to learn features from dual-temporal images. After that, an ambiguity refinement module (ARM) is designed to extract the ambiguity regions and then difference features are generated based on it. Considering that the scales of different changed objects vary, a weight rearrangement module (WRM) is proposed to fuse the difference features from different layers. In order to test the performance of our proposed model, we conduct experiments on three benchmark datasets, including SYSU-CD, SVCD, and LEVIR-CD. The experimental results show that our model can outperform several state-of-the-art models on all three datasets, which validates the effectiveness of it. The source code of our proposed model will be released at https://github.com/KevinDaldry/AANet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米子哈发布了新的文献求助10
刚刚
华仔应助刘奎冉采纳,获得30
刚刚
研友Bn完成签到 ,获得积分10
1秒前
1秒前
2秒前
xinghe123发布了新的文献求助10
2秒前
酷酷问薇完成签到,获得积分20
3秒前
3秒前
H_完成签到,获得积分10
3秒前
2024dsb完成签到 ,获得积分10
4秒前
4秒前
西行纪发布了新的文献求助10
5秒前
DreamSeker8完成签到,获得积分10
5秒前
科研通AI6应助Scorpio采纳,获得30
5秒前
5秒前
认真浩宇发布了新的文献求助10
6秒前
坚强小虾米完成签到,获得积分10
6秒前
6秒前
7秒前
zzztsing0213完成签到,获得积分10
7秒前
sxmt123456789发布了新的文献求助30
8秒前
8秒前
jingxu发布了新的文献求助10
9秒前
nsk发布了新的文献求助10
10秒前
畅快的觅风完成签到,获得积分10
10秒前
11秒前
sxs发布了新的文献求助10
11秒前
慕青应助坚强小虾米采纳,获得10
11秒前
沉默海完成签到,获得积分10
11秒前
Steven完成签到 ,获得积分10
11秒前
科研通AI6应助山雷采纳,获得10
12秒前
桐桐应助小张在努力采纳,获得10
12秒前
酷波er应助sci大户采纳,获得10
13秒前
ding应助DrLee采纳,获得10
13秒前
13秒前
SciGPT应助刘丰铭采纳,获得10
13秒前
qitengzhu发布了新的文献求助10
13秒前
刘霆勋发布了新的文献求助10
13秒前
英姑应助SY采纳,获得10
14秒前
小张同学发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809