AANet: An Ambiguity-Aware Network for Remote-Sensing Image Change Detection

遥感 计算机科学 变更检测 模棱两可 图像(数学) 计算机视觉 人工智能 地质学 程序设计语言
作者
Renlong Hang,Siqi Xu,Panli Yuan,Qingshan Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:8
标识
DOI:10.1109/tgrs.2024.3371463
摘要

Remote sensing image change detection (CD) task plays an important role in land-use survey, city construction investigation and other vital industries. Recently, deep learning has become a mainstream method for this task due to its satisfactory performance in most cases. However, it often suffers from difficulties in dealing with ambiguity regions, where pseudo-changes happen or real changes are corrupted. In this article, we propose an ambiguity-aware network (AANet) to address the aforementioned issue. Specifically, our network firstly adopts convolutional layers to learn features from dual-temporal images. After that, an ambiguity refinement module (ARM) is designed to extract the ambiguity regions and then difference features are generated based on it. Considering that the scales of different changed objects vary, a weight rearrangement module (WRM) is proposed to fuse the difference features from different layers. In order to test the performance of our proposed model, we conduct experiments on three benchmark datasets, including SYSU-CD, SVCD, and LEVIR-CD. The experimental results show that our model can outperform several state-of-the-art models on all three datasets, which validates the effectiveness of it. The source code of our proposed model will be released at https://github.com/KevinDaldry/AANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Naomi-yu发布了新的文献求助10
2秒前
2秒前
2秒前
希望天下0贩的0应助coolkid采纳,获得10
3秒前
kkkay完成签到,获得积分10
5秒前
6秒前
lucilleshen发布了新的文献求助10
7秒前
chaozihao发布了新的文献求助10
8秒前
科研通AI2S应助Sun采纳,获得10
8秒前
12w完成签到,获得积分10
9秒前
受伤幻桃完成签到 ,获得积分10
9秒前
婷婷应助聂慕凝采纳,获得10
12秒前
健康的雁凡完成签到,获得积分10
13秒前
瓜尔佳发布了新的文献求助10
14秒前
14秒前
李健的小迷弟应助TT2022采纳,获得10
15秒前
16秒前
kenna123发布了新的文献求助10
17秒前
17秒前
chaozihao完成签到,获得积分10
17秒前
cnspower发布了新的文献求助10
18秒前
07发布了新的文献求助10
21秒前
叶问夏完成签到 ,获得积分10
21秒前
22秒前
麦田里的守望者完成签到,获得积分10
23秒前
yuan完成签到,获得积分20
25秒前
25秒前
李健应助zxfaaaaa采纳,获得30
26秒前
彭于晏应助xu采纳,获得10
26秒前
英姑应助corner采纳,获得10
27秒前
鲤鱼冬灵完成签到,获得积分10
29秒前
32秒前
35秒前
LX完成签到,获得积分10
35秒前
黑眼豆豆完成签到,获得积分10
35秒前
36秒前
x跳完成签到,获得积分10
37秒前
coolkid发布了新的文献求助200
39秒前
39秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198