亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MoANet: A Motion Attention Network for Sea Fog Detection in Time Series Meteorological Satellite Imagery

计算机科学 人工智能 能见度 光流 遥感 卫星 计算机视觉 卫星图像 运动(物理) 交叉口(航空) 数据集 图像(数学) 地质学 气象学 地理 地图学 工程类 航空航天工程
作者
Z. Y. Yang,Ming Wu,Mengqiu Xu,Xun Zhu,Chuang Zhang,Bin Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 1976-1987 被引量:2
标识
DOI:10.1109/jstars.2023.3340909
摘要

Sea fog detection is a significant and challenging issue in meteorological satellite imagery. Distinguishing between sea fog and low clouds is challenging due to the similar morphology and brightness characteristics of these two phenomena on the imageries. Most of the existing deep learning methods are based on a single imagery feature extraction without the time-related features in imagery sequence. Although the designed temporal models, such as temporal U-Net, expand the available features from a single imagery to the consecutive frames and introduce general temporal information, the learned motion features are not explicit and can only be implicitly learned through a large amount of data. Thus, we introduce motion features obtained from continuous temporal imagery sequences into the sea fog detection task due to the discrepancy between sea fog and other types of clouds. In this work, under the motion features acquired by Horn-Schunck (HS) optical flow method and attention mechanisms, a Motion Attention Network (MoANet) for sea fog detection is proposed, named MoANet. We performed detailed experiments on the Himawaria-8 satellite imagery data set (H-8 Dataset). The Mean Intersection over Union (MIoU) of our method reaches 81.38%, which is 6.49% higher than the single imagery method. The visualization of the results shows that MoANet has more smooth edges, as well as detects more complete area than others. Furthermore, we validate on International Comprehensive Ocean-Atmosphere Data Set (ICOADS) through contrasting visibility value to prove the practicality of the proposed method and the accuracy achieves 90.65%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
李健应助wbs13521采纳,获得10
23秒前
Demi_Ming发布了新的文献求助10
25秒前
53秒前
RylNG完成签到,获得积分10
57秒前
58秒前
kdjm688发布了新的文献求助10
1分钟前
Hziyi发布了新的文献求助10
1分钟前
Hziyi完成签到,获得积分20
1分钟前
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
小二郎应助点心采纳,获得10
2分钟前
2分钟前
善学以致用应助FXDD采纳,获得10
2分钟前
2分钟前
Hd完成签到 ,获得积分10
3分钟前
3分钟前
科研完成签到,获得积分10
3分钟前
科研发布了新的文献求助30
3分钟前
朴素的山蝶完成签到 ,获得积分10
3分钟前
gpx发布了新的文献求助10
4分钟前
4分钟前
kHz发布了新的文献求助10
4分钟前
4分钟前
点心发布了新的文献求助10
4分钟前
MGXL完成签到 ,获得积分10
5分钟前
华仔应助qwdqw采纳,获得10
5分钟前
棠真完成签到 ,获得积分10
5分钟前
5分钟前
qwdqw发布了新的文献求助10
5分钟前
qwdqw完成签到,获得积分10
5分钟前
不倦应助白华苍松采纳,获得20
5分钟前
所所应助Demi_Ming采纳,获得10
5分钟前
6分钟前
Demi_Ming发布了新的文献求助10
6分钟前
李健应助Demi_Ming采纳,获得10
6分钟前
6分钟前
等等发布了新的文献求助10
6分钟前
不倦应助白华苍松采纳,获得20
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575069
求助须知:如何正确求助?哪些是违规求助? 3145092
关于积分的说明 9458069
捐赠科研通 2846362
什么是DOI,文献DOI怎么找? 1564821
邀请新用户注册赠送积分活动 732613
科研通“疑难数据库(出版商)”最低求助积分说明 719188