Seg2Sonar: A Full-Class Sample Synthesis Method Applied to Underwater Sonar Image Target Detection, Recognition, and Segmentation Tasks

声纳 人工智能 图像分割 计算机科学 水下 计算机视觉 样品(材料) 分割 模式识别(心理学) 班级(哲学) 合成孔径声纳 地质学 色谱法 海洋学 化学
作者
Chao Huang,Jianhu Zhao,Hongmei Zhang,Yongcan Yu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2024.3363875
摘要

To overcome the challenges of limited samples, difficult acquisition, under-representation, and labeling in utilizing sonar images and deep learning for target detection, recognition, and segmentation tasks for full-class underwater targets, we propose the Seg2Sonar network based on SPADE. This network generates images through segmentation maps, thus eliminating the need for sample annotation. Additionally, we incorporate the Skip-Layer channel-wise Excitation (SLE) module into the SPADE network to enhance feature extraction ability with minimal training samples. To improve the realism of generated images, we introduce the Focal Frequency Loss (FFL) module, and propose the Elasticity loss (EL) strategy to improve the random combination capability of the network, considering the characteristics of low resolution and severe distortion of sonar images. Furthermore, we propose a weight adjustment (WA) strategy that tackles the challenge of low and unbalanced feature representation with few samples by taking into account the unbalanced distribution of features using prior information. hese four improvements enable efficient sample augmentation of sonar images with limited samples. Building upon the improved Seg2Sonar network, we propose an underwater full-class target augmentation strategy. Based on the imaging characteristics of sonar images, we classify underwater full-class targets into four categories: texture level, group level, shape level, and intensity level. We provide corresponding augmentation strategies by leveraging similar features among sonar target images or adding external radar/optical features to supplement the diversity of features. Our experimental results demonstrate the efficacy of our proposed method in achieving sample augmentation of underwater full-class targets with minimal samples (less than 10) or even zero samples. The approach achieves about 90% accuracy in detection, recognition, and segmentation for all types of targets through deep learning methods. Our findings provide a promising solution for efficient sample augmentation of underwater full-class targets with limited samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mawenting完成签到 ,获得积分10
刚刚
zeke完成签到,获得积分10
1秒前
科研通AI5应助solobang采纳,获得10
2秒前
2秒前
小宇OvO发布了新的文献求助10
3秒前
3秒前
忘羡222完成签到,获得积分10
3秒前
专一发布了新的文献求助10
5秒前
跳跃曼文完成签到,获得积分10
6秒前
干将莫邪完成签到,获得积分10
7秒前
SYLH应助exile采纳,获得10
7秒前
小二郎应助魔幻的从梦采纳,获得10
8秒前
9秒前
雪鸽鸽发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
12秒前
科研通AI5应助朱一龙采纳,获得30
13秒前
SharonDu完成签到 ,获得积分10
14秒前
ayin完成签到,获得积分10
14秒前
15秒前
15秒前
啦啦啦完成签到,获得积分10
15秒前
coffee发布了新的文献求助10
16秒前
16秒前
科研混子发布了新的文献求助10
16秒前
咿咿呀呀发布了新的文献求助10
16秒前
酷酷碧发布了新的文献求助10
18秒前
飘逸宛丝完成签到,获得积分10
19秒前
qzaima发布了新的文献求助10
19秒前
米酒完成签到,获得积分10
21秒前
step_stone给step_stone的求助进行了留言
21秒前
乐乐应助ayin采纳,获得10
22秒前
无花果应助hhh采纳,获得10
24秒前
叁壹粑粑完成签到,获得积分10
25秒前
酷酷碧完成签到,获得积分10
25秒前
26秒前
磕盐民工完成签到,获得积分10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824