Seg2Sonar: A Full-Class Sample Synthesis Method Applied to Underwater Sonar Image Target Detection, Recognition, and Segmentation Tasks

声纳 人工智能 图像分割 计算机科学 水下 计算机视觉 样品(材料) 分割 模式识别(心理学) 班级(哲学) 合成孔径声纳 地质学 海洋学 化学 色谱法
作者
Chao Huang,Jianhu Zhao,Hongmei Zhang,Yongcan Yu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2024.3363875
摘要

To overcome the challenges of limited samples, difficult acquisition, under-representation, and labeling in utilizing sonar images and deep learning for target detection, recognition, and segmentation tasks for full-class underwater targets, we propose the Seg2Sonar network based on SPADE. This network generates images through segmentation maps, thus eliminating the need for sample annotation. Additionally, we incorporate the Skip-Layer channel-wise Excitation (SLE) module into the SPADE network to enhance feature extraction ability with minimal training samples. To improve the realism of generated images, we introduce the Focal Frequency Loss (FFL) module, and propose the Elasticity loss (EL) strategy to improve the random combination capability of the network, considering the characteristics of low resolution and severe distortion of sonar images. Furthermore, we propose a weight adjustment (WA) strategy that tackles the challenge of low and unbalanced feature representation with few samples by taking into account the unbalanced distribution of features using prior information. hese four improvements enable efficient sample augmentation of sonar images with limited samples. Building upon the improved Seg2Sonar network, we propose an underwater full-class target augmentation strategy. Based on the imaging characteristics of sonar images, we classify underwater full-class targets into four categories: texture level, group level, shape level, and intensity level. We provide corresponding augmentation strategies by leveraging similar features among sonar target images or adding external radar/optical features to supplement the diversity of features. Our experimental results demonstrate the efficacy of our proposed method in achieving sample augmentation of underwater full-class targets with minimal samples (less than 10) or even zero samples. The approach achieves about 90% accuracy in detection, recognition, and segmentation for all types of targets through deep learning methods. Our findings provide a promising solution for efficient sample augmentation of underwater full-class targets with limited samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助jinjinjin采纳,获得10
1秒前
joseph应助22222采纳,获得10
2秒前
George发布了新的文献求助30
2秒前
3秒前
在水一方应助111采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
Chelry完成签到,获得积分10
4秒前
6秒前
田様应助幽默的厉采纳,获得10
6秒前
7秒前
吕旭发布了新的文献求助10
8秒前
六六完成签到,获得积分10
8秒前
小杰发布了新的文献求助10
11秒前
11秒前
Leewener完成签到,获得积分10
13秒前
superbanggg完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
Owen应助忧郁的猕猴桃采纳,获得10
15秒前
林夕完成签到,获得积分10
15秒前
热心市民小红花应助ei123采纳,获得30
16秒前
zain完成签到 ,获得积分10
16秒前
jinjinjin发布了新的文献求助10
16秒前
斜阳完成签到 ,获得积分10
17秒前
111发布了新的文献求助10
17秒前
皮皮的鹿发布了新的文献求助30
20秒前
WZX发布了新的文献求助10
22秒前
24秒前
duke完成签到,获得积分10
26秒前
知性的囧发布了新的文献求助10
27秒前
小马甲应助大力的诗蕾采纳,获得10
28秒前
28秒前
灼灼朗朗完成签到,获得积分10
29秒前
gww完成签到,获得积分10
29秒前
tly完成签到,获得积分10
30秒前
keyun完成签到,获得积分20
30秒前
青柠完成签到,获得积分10
31秒前
31秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891