Seg2Sonar: A Full-Class Sample Synthesis Method Applied to Underwater Sonar Image Target Detection, Recognition, and Segmentation Tasks

声纳 人工智能 图像分割 计算机科学 水下 计算机视觉 样品(材料) 分割 模式识别(心理学) 班级(哲学) 合成孔径声纳 地质学 海洋学 化学 色谱法
作者
Chao Huang,Jianhu Zhao,Hongmei Zhang,Yongcan Yu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2024.3363875
摘要

To overcome the challenges of limited samples, difficult acquisition, under-representation, and labeling in utilizing sonar images and deep learning for target detection, recognition, and segmentation tasks for full-class underwater targets, we propose the Seg2Sonar network based on SPADE. This network generates images through segmentation maps, thus eliminating the need for sample annotation. Additionally, we incorporate the Skip-Layer channel-wise Excitation (SLE) module into the SPADE network to enhance feature extraction ability with minimal training samples. To improve the realism of generated images, we introduce the Focal Frequency Loss (FFL) module, and propose the Elasticity loss (EL) strategy to improve the random combination capability of the network, considering the characteristics of low resolution and severe distortion of sonar images. Furthermore, we propose a weight adjustment (WA) strategy that tackles the challenge of low and unbalanced feature representation with few samples by taking into account the unbalanced distribution of features using prior information. hese four improvements enable efficient sample augmentation of sonar images with limited samples. Building upon the improved Seg2Sonar network, we propose an underwater full-class target augmentation strategy. Based on the imaging characteristics of sonar images, we classify underwater full-class targets into four categories: texture level, group level, shape level, and intensity level. We provide corresponding augmentation strategies by leveraging similar features among sonar target images or adding external radar/optical features to supplement the diversity of features. Our experimental results demonstrate the efficacy of our proposed method in achieving sample augmentation of underwater full-class targets with minimal samples (less than 10) or even zero samples. The approach achieves about 90% accuracy in detection, recognition, and segmentation for all types of targets through deep learning methods. Our findings provide a promising solution for efficient sample augmentation of underwater full-class targets with limited samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
1秒前
1秒前
斯文败类应助cyn采纳,获得10
1秒前
zooro完成签到,获得积分10
2秒前
香蕉觅云应助飞飞鱼采纳,获得10
2秒前
3秒前
4秒前
Aeastie完成签到,获得积分20
5秒前
完美世界应助edtaa采纳,获得10
5秒前
啦啦啦发布了新的文献求助10
6秒前
叶子关注了科研通微信公众号
8秒前
于是乎完成签到 ,获得积分10
8秒前
账号本人发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助fafa采纳,获得10
11秒前
wanwan完成签到,获得积分10
12秒前
llxgjx完成签到,获得积分10
14秒前
15秒前
16秒前
英姑应助flyqua采纳,获得10
16秒前
17秒前
17秒前
小栗子最爱吃糖完成签到,获得积分10
19秒前
Murphy发布了新的文献求助10
20秒前
犹豫的昊焱完成签到,获得积分10
20秒前
22秒前
可爱的函函应助笑一笑采纳,获得10
25秒前
26秒前
xun发布了新的文献求助20
26秒前
yyh完成签到,获得积分10
26秒前
共享精神应助清爽的薄荷采纳,获得30
27秒前
YouziBa完成签到,获得积分10
28秒前
LLLL完成签到,获得积分10
28秒前
周子淦发布了新的文献求助10
29秒前
29秒前
edtaa发布了新的文献求助10
31秒前
vica发布了新的文献求助30
31秒前
小李爱科研完成签到,获得积分20
32秒前
wxy完成签到,获得积分20
33秒前
wxy发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112