Seg2Sonar: A Full-Class Sample Synthesis Method Applied to Underwater Sonar Image Target Detection, Recognition, and Segmentation Tasks

声纳 人工智能 图像分割 计算机科学 水下 计算机视觉 样品(材料) 分割 模式识别(心理学) 班级(哲学) 合成孔径声纳 地质学 海洋学 化学 色谱法
作者
Chao Huang,Jianhu Zhao,Hongmei Zhang,Yongcan Yu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2024.3363875
摘要

To overcome the challenges of limited samples, difficult acquisition, under-representation, and labeling in utilizing sonar images and deep learning for target detection, recognition, and segmentation tasks for full-class underwater targets, we propose the Seg2Sonar network based on SPADE. This network generates images through segmentation maps, thus eliminating the need for sample annotation. Additionally, we incorporate the Skip-Layer channel-wise Excitation (SLE) module into the SPADE network to enhance feature extraction ability with minimal training samples. To improve the realism of generated images, we introduce the Focal Frequency Loss (FFL) module, and propose the Elasticity loss (EL) strategy to improve the random combination capability of the network, considering the characteristics of low resolution and severe distortion of sonar images. Furthermore, we propose a weight adjustment (WA) strategy that tackles the challenge of low and unbalanced feature representation with few samples by taking into account the unbalanced distribution of features using prior information. hese four improvements enable efficient sample augmentation of sonar images with limited samples. Building upon the improved Seg2Sonar network, we propose an underwater full-class target augmentation strategy. Based on the imaging characteristics of sonar images, we classify underwater full-class targets into four categories: texture level, group level, shape level, and intensity level. We provide corresponding augmentation strategies by leveraging similar features among sonar target images or adding external radar/optical features to supplement the diversity of features. Our experimental results demonstrate the efficacy of our proposed method in achieving sample augmentation of underwater full-class targets with minimal samples (less than 10) or even zero samples. The approach achieves about 90% accuracy in detection, recognition, and segmentation for all types of targets through deep learning methods. Our findings provide a promising solution for efficient sample augmentation of underwater full-class targets with limited samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪行天下完成签到,获得积分10
2秒前
danli完成签到 ,获得积分10
3秒前
guangyu完成签到,获得积分10
5秒前
学术老6完成签到,获得积分10
6秒前
c123完成签到 ,获得积分10
8秒前
恐怖稽器人完成签到,获得积分10
8秒前
WXR完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
9秒前
10秒前
可爱丸子完成签到,获得积分10
10秒前
皮汤汤完成签到 ,获得积分10
11秒前
JXDYYZK完成签到,获得积分10
12秒前
SYLH应助lu采纳,获得10
12秒前
Servant2023完成签到,获得积分10
12秒前
鸽子的迷信完成签到,获得积分10
14秒前
nine2652完成签到 ,获得积分10
15秒前
烂漫的睫毛完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
陈老太完成签到 ,获得积分10
18秒前
宇宇宇c完成签到,获得积分10
19秒前
zxt完成签到,获得积分10
20秒前
大橙子发布了新的文献求助10
23秒前
聪明静柏完成签到 ,获得积分10
25秒前
kimiwanano完成签到,获得积分10
27秒前
lu完成签到,获得积分10
28秒前
Profeto应助齐嫒琳采纳,获得10
29秒前
30秒前
情怀应助科研通管家采纳,获得10
31秒前
从来都不会放弃zr完成签到,获得积分10
35秒前
1459完成签到,获得积分10
37秒前
行者+完成签到,获得积分10
37秒前
GongSyi完成签到 ,获得积分10
38秒前
Boris完成签到 ,获得积分10
40秒前
哭泣笑柳完成签到,获得积分10
40秒前
万能图书馆应助大橙子采纳,获得10
43秒前
大眼睛土豆完成签到,获得积分10
47秒前
一条虫gg完成签到,获得积分10
50秒前
51秒前
52秒前
55秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022