Prediction of suicidal ideation among preadolescent children with machine learning models: A longitudinal study

自杀意念 毒物控制 心理学 伤害预防 纵向研究 神经质 临床心理学 多层感知器 自杀预防 人为因素与人体工程学 发展心理学 机器学习 医学 人工神经网络 人格 计算机科学 病理 社会心理学 环境卫生
作者
Chi Yang,E. Scott Huebner,Lili Tian
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:352: 403-409 被引量:4
标识
DOI:10.1016/j.jad.2024.02.070
摘要

Machine learning (ML) has been widely used to predict suicidal ideation (SI) in adolescents and adults. Nevertheless, studies of accurate and efficient models of SI prediction with preadolescent children are still needed because SI is surprisingly prevalent during the transition into adolescence. This study aimed to explore the potential of ML models to predict SI among preadolescent children. A total of 4691 Chinese children (54.89 % boys, Mage = 10.92 at baseline) and their parents completed relevant measures at baseline and the children provided 6-month follow-up data for SI. The current study compared four ML models: Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), to predict SI and to identify variables with predictive value based on the best-performing model among Chinese preadolescent children. The RF model achieved the highest discriminant performance with an AUC of 0.92, accuracy of 0.93 (balanced accuracy = 0.88). The factors of internalizing problems, externalizing problems, neuroticism, childhood maltreatment, and subjective well-being in school demonstrated the highest values in predicting SI. The findings of this study suggested that ML models based on the observation and assessment of children's general characteristics and experiences in everyday life can serve as convenient screening and evaluation tools for suicide risk assessment among Chinese preadolescent children. The findings also provide insights for early intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邱志鸿完成签到,获得积分10
刚刚
徐多多完成签到,获得积分20
1秒前
紧张的新烟完成签到,获得积分10
2秒前
64658应助窗外飞仙采纳,获得10
3秒前
Hayley完成签到,获得积分10
4秒前
安静的初翠完成签到,获得积分10
5秒前
Owen应助令狐擎宇采纳,获得10
7秒前
科研通AI2S应助zm采纳,获得10
8秒前
Owen应助weber采纳,获得10
10秒前
12秒前
12秒前
13秒前
张张张完成签到,获得积分20
14秒前
14秒前
大胆的向卉完成签到,获得积分20
14秒前
15秒前
16秒前
砥砺发布了新的文献求助10
17秒前
18秒前
wise111发布了新的文献求助10
19秒前
19秒前
ding应助LQ采纳,获得10
21秒前
CodeCraft应助张光光采纳,获得10
22秒前
搜集达人应助张光光采纳,获得10
22秒前
hi应助张光光采纳,获得10
22秒前
酷波er应助张光光采纳,获得10
22秒前
烟花应助张光光采纳,获得10
22秒前
田様应助张光光采纳,获得10
22秒前
22秒前
log关闭了log文献求助
27秒前
27秒前
鱼圆杂铺完成签到,获得积分10
29秒前
29秒前
仲夏夜之梦完成签到,获得积分10
30秒前
30秒前
Ivy发布了新的文献求助10
31秒前
英俊一刀完成签到,获得积分10
32秒前
LQ发布了新的文献求助10
33秒前
36秒前
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962722
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142362
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791555
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517