亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SACINet: Semantic-Aware Cross-Modal Interaction Network for Real-Time 3D Object Detection

计算机科学 语义学(计算机科学) 水准点(测量) 特征(语言学) 人工智能 情态动词 特征提取 成对比较 分割 目标检测 钥匙(锁) 计算机视觉 模式识别(心理学) 语言学 哲学 化学 计算机安全 大地测量学 高分子化学 程序设计语言 地理
作者
Ying Yang,Hui Yin,Aixin Chong,Jin Wan,Qing-Yi Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tiv.2023.3348099
摘要

LiDAR-Camera fusion-based 3D object detection is one of the main visual perception tasks in autonomous driving, facing the challenges of small targets and occlusions. Image semantics are beneficial for these issues, yet most existing methods applied semantics only in the cross-modal fusion stage to compensate for point geometric features, where the advantages of semantic information are not effectively explored. Further, the increased complexity of the network caused by introducing semantics is also a major obstacle to real-time. In this paper, we propose a Semantic-Aware Cross-modal Interaction Network(SACINet) to achieve real-time 3D object detection, which introduces high-level semantics into both key stages of image feature extraction and cross-modal fusion. Specifically, we design a Lightweight Semantic-aware Image Feature Extractor(LSIFE) to enhance semantic samplings of objects while reducing numerous parameters. Additionally, a Semantic-Modulated Cross-modal Interaction Mechanism(SMCIM) is proposed to stress semantic details in cross-modal fusion. This mechanism conducts a pairwise interactive fusion among geometric features, semantic-aware point-wise image features, and semantic-aware point-wise segmentation features by the designed Conditions Generation Network(CGN) and Semantic-Aware Point-wise Feature Modulation(SAPFM). Ultimately, we construct a real-time(25.2fps) 3D detector with minor parameters(23.79 MB), which can better achieve the trade-off between accuracy and efficiency. Comprehensive experiments on the KITTI benchmark illustrate that SACINet is effective for real-time 3D detection, especially on small and severely occluded targets. Further, we conduct semantic occupancy perception experiments on the latest nuScenes-Occupancy benchmark, which verifies the effectiveness of SMCIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricardo完成签到 ,获得积分10
1秒前
战战兢兢的失眠完成签到 ,获得积分10
14秒前
18秒前
翻翻发布了新的文献求助10
22秒前
34秒前
36秒前
lyw发布了新的文献求助10
39秒前
41秒前
翻翻完成签到,获得积分10
43秒前
51秒前
52秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
潮鸣完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
1分钟前
巫马百招完成签到,获得积分10
1分钟前
lyw发布了新的文献求助10
1分钟前
wanci应助Fortune采纳,获得10
1分钟前
fossick2010完成签到 ,获得积分10
1分钟前
Penny完成签到,获得积分10
2分钟前
2分钟前
Penny发布了新的文献求助10
2分钟前
andrele发布了新的文献求助50
2分钟前
Fortune发布了新的文献求助10
2分钟前
颜安完成签到,获得积分20
2分钟前
张张完成签到 ,获得积分10
2分钟前
2分钟前
Fortune完成签到,获得积分10
2分钟前
Vincent发布了新的文献求助10
2分钟前
爆米花应助lzmcsp采纳,获得10
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
Vincent完成签到,获得积分10
2分钟前
蓝色牛马完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507