SACINet: Semantic-Aware Cross-Modal Interaction Network for Real-Time 3D Object Detection

计算机科学 语义学(计算机科学) 水准点(测量) 特征(语言学) 人工智能 情态动词 特征提取 成对比较 分割 目标检测 钥匙(锁) 计算机视觉 模式识别(心理学) 语言学 哲学 化学 计算机安全 大地测量学 高分子化学 程序设计语言 地理
作者
Ying Yang,Hui Yin,Aixin Chong,Jin Wan,Qing-Yi Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tiv.2023.3348099
摘要

LiDAR-Camera fusion-based 3D object detection is one of the main visual perception tasks in autonomous driving, facing the challenges of small targets and occlusions. Image semantics are beneficial for these issues, yet most existing methods applied semantics only in the cross-modal fusion stage to compensate for point geometric features, where the advantages of semantic information are not effectively explored. Further, the increased complexity of the network caused by introducing semantics is also a major obstacle to real-time. In this paper, we propose a Semantic-Aware Cross-modal Interaction Network(SACINet) to achieve real-time 3D object detection, which introduces high-level semantics into both key stages of image feature extraction and cross-modal fusion. Specifically, we design a Lightweight Semantic-aware Image Feature Extractor(LSIFE) to enhance semantic samplings of objects while reducing numerous parameters. Additionally, a Semantic-Modulated Cross-modal Interaction Mechanism(SMCIM) is proposed to stress semantic details in cross-modal fusion. This mechanism conducts a pairwise interactive fusion among geometric features, semantic-aware point-wise image features, and semantic-aware point-wise segmentation features by the designed Conditions Generation Network(CGN) and Semantic-Aware Point-wise Feature Modulation(SAPFM). Ultimately, we construct a real-time(25.2fps) 3D detector with minor parameters(23.79 MB), which can better achieve the trade-off between accuracy and efficiency. Comprehensive experiments on the KITTI benchmark illustrate that SACINet is effective for real-time 3D detection, especially on small and severely occluded targets. Further, we conduct semantic occupancy perception experiments on the latest nuScenes-Occupancy benchmark, which verifies the effectiveness of SMCIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果发布了新的文献求助30
刚刚
CodeCraft应助zoey采纳,获得10
1秒前
1秒前
烟酒僧发布了新的文献求助10
2秒前
2秒前
Smoiy发布了新的文献求助10
3秒前
3秒前
天天快乐应助迷路的寄风采纳,获得10
4秒前
Elmore完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
能干觅珍发布了新的文献求助10
7秒前
暗号发布了新的文献求助30
7秒前
12发布了新的文献求助10
8秒前
Scaro发布了新的文献求助20
8秒前
8秒前
cangye完成签到,获得积分10
9秒前
传奇3应助执着烧鹅采纳,获得10
9秒前
10秒前
mmdou发布了新的文献求助20
10秒前
Taoie发布了新的文献求助10
10秒前
了了完成签到,获得积分10
11秒前
12秒前
小杭76应助淡定从凝采纳,获得10
13秒前
zoey发布了新的文献求助10
13秒前
14秒前
14秒前
搜集达人应助dz采纳,获得10
15秒前
CTCTCT6完成签到,获得积分20
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
HHHHH完成签到,获得积分10
17秒前
阿邱发布了新的文献求助10
17秒前
周亚男发布了新的文献求助10
18秒前
18秒前
wintersss完成签到,获得积分10
18秒前
今后应助liuhang采纳,获得30
20秒前
852应助zkin采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073569
求助须知:如何正确求助?哪些是违规求助? 4293683
关于积分的说明 13379160
捐赠科研通 4115101
什么是DOI,文献DOI怎么找? 2253421
邀请新用户注册赠送积分活动 1258185
关于科研通互助平台的介绍 1191071