SACINet: Semantic-Aware Cross-Modal Interaction Network for Real-Time 3D Object Detection

计算机科学 语义学(计算机科学) 水准点(测量) 特征(语言学) 人工智能 情态动词 特征提取 成对比较 分割 目标检测 钥匙(锁) 计算机视觉 模式识别(心理学) 语言学 哲学 化学 计算机安全 大地测量学 高分子化学 程序设计语言 地理
作者
Ying Yang,Hui Yin,Aixin Chong,Jin Wan,Qing-Yi Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tiv.2023.3348099
摘要

LiDAR-Camera fusion-based 3D object detection is one of the main visual perception tasks in autonomous driving, facing the challenges of small targets and occlusions. Image semantics are beneficial for these issues, yet most existing methods applied semantics only in the cross-modal fusion stage to compensate for point geometric features, where the advantages of semantic information are not effectively explored. Further, the increased complexity of the network caused by introducing semantics is also a major obstacle to real-time. In this paper, we propose a Semantic-Aware Cross-modal Interaction Network(SACINet) to achieve real-time 3D object detection, which introduces high-level semantics into both key stages of image feature extraction and cross-modal fusion. Specifically, we design a Lightweight Semantic-aware Image Feature Extractor(LSIFE) to enhance semantic samplings of objects while reducing numerous parameters. Additionally, a Semantic-Modulated Cross-modal Interaction Mechanism(SMCIM) is proposed to stress semantic details in cross-modal fusion. This mechanism conducts a pairwise interactive fusion among geometric features, semantic-aware point-wise image features, and semantic-aware point-wise segmentation features by the designed Conditions Generation Network(CGN) and Semantic-Aware Point-wise Feature Modulation(SAPFM). Ultimately, we construct a real-time(25.2fps) 3D detector with minor parameters(23.79 MB), which can better achieve the trade-off between accuracy and efficiency. Comprehensive experiments on the KITTI benchmark illustrate that SACINet is effective for real-time 3D detection, especially on small and severely occluded targets. Further, we conduct semantic occupancy perception experiments on the latest nuScenes-Occupancy benchmark, which verifies the effectiveness of SMCIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助高挑的牛青采纳,获得10
刚刚
2309完成签到,获得积分10
刚刚
celine完成签到 ,获得积分10
1秒前
MILL关注了科研通微信公众号
1秒前
上官靖发布了新的文献求助10
1秒前
研究啥发布了新的文献求助10
1秒前
一棵树发布了新的文献求助10
2秒前
莫里完成签到,获得积分10
2秒前
3秒前
吃的了细糠的山猪完成签到,获得积分10
5秒前
Li发布了新的文献求助20
5秒前
6秒前
Orange应助Banbor2021采纳,获得20
6秒前
6秒前
呆桃啵啵奶绿完成签到,获得积分10
6秒前
11100完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
潇湘夜雨发布了新的文献求助10
11秒前
Spine脊柱完成签到,获得积分10
13秒前
华仔应助研究啥采纳,获得10
13秒前
shinn发布了新的文献求助10
14秒前
14秒前
15秒前
明天完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
pluto应助怕孤单的安蕾采纳,获得10
19秒前
方勇飞发布了新的文献求助10
19秒前
wzh发布了新的文献求助10
20秒前
朝歌完成签到,获得积分10
20秒前
ocean发布了新的文献求助10
21秒前
22秒前
漠尘完成签到 ,获得积分10
23秒前
ZZ发布了新的文献求助10
23秒前
AstrLees完成签到 ,获得积分10
23秒前
一棵树完成签到,获得积分10
23秒前
逃跑的想表白的你猜完成签到,获得积分10
23秒前
yyyyyyy发布了新的文献求助10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202