SACINet: Semantic-Aware Cross-Modal Interaction Network for Real-Time 3D Object Detection

计算机科学 语义学(计算机科学) 水准点(测量) 特征(语言学) 人工智能 情态动词 特征提取 成对比较 分割 目标检测 钥匙(锁) 计算机视觉 模式识别(心理学) 哲学 语言学 化学 计算机安全 高分子化学 程序设计语言 地理 大地测量学
作者
Ying Yang,Hui Yin,Aixin Chong,Jin Wan,Qing-Yi Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tiv.2023.3348099
摘要

LiDAR-Camera fusion-based 3D object detection is one of the main visual perception tasks in autonomous driving, facing the challenges of small targets and occlusions. Image semantics are beneficial for these issues, yet most existing methods applied semantics only in the cross-modal fusion stage to compensate for point geometric features, where the advantages of semantic information are not effectively explored. Further, the increased complexity of the network caused by introducing semantics is also a major obstacle to real-time. In this paper, we propose a Semantic-Aware Cross-modal Interaction Network(SACINet) to achieve real-time 3D object detection, which introduces high-level semantics into both key stages of image feature extraction and cross-modal fusion. Specifically, we design a Lightweight Semantic-aware Image Feature Extractor(LSIFE) to enhance semantic samplings of objects while reducing numerous parameters. Additionally, a Semantic-Modulated Cross-modal Interaction Mechanism(SMCIM) is proposed to stress semantic details in cross-modal fusion. This mechanism conducts a pairwise interactive fusion among geometric features, semantic-aware point-wise image features, and semantic-aware point-wise segmentation features by the designed Conditions Generation Network(CGN) and Semantic-Aware Point-wise Feature Modulation(SAPFM). Ultimately, we construct a real-time(25.2fps) 3D detector with minor parameters(23.79 MB), which can better achieve the trade-off between accuracy and efficiency. Comprehensive experiments on the KITTI benchmark illustrate that SACINet is effective for real-time 3D detection, especially on small and severely occluded targets. Further, we conduct semantic occupancy perception experiments on the latest nuScenes-Occupancy benchmark, which verifies the effectiveness of SMCIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gy发布了新的文献求助10
刚刚
yb发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
思源应助Justin97采纳,获得10
2秒前
负责的豆芽关注了科研通微信公众号
2秒前
djsj给liuqiease的求助进行了留言
4秒前
pysa发布了新的文献求助10
5秒前
852应助123采纳,获得10
5秒前
5秒前
5秒前
o10完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
镜小小静发布了新的文献求助10
8秒前
善学以致用应助123采纳,获得10
8秒前
8秒前
yb完成签到,获得积分20
8秒前
严一勺发布了新的文献求助10
9秒前
神勇语堂发布了新的文献求助30
9秒前
9秒前
隐形曼青应助91采纳,获得10
9秒前
李驰完成签到 ,获得积分10
9秒前
风趣的无剑完成签到,获得积分10
10秒前
乐君发布了新的文献求助10
10秒前
汪jy发布了新的文献求助10
11秒前
幽默不愁发布了新的文献求助10
12秒前
12秒前
傻呼呼发布了新的文献求助10
12秒前
2R发布了新的文献求助10
12秒前
13秒前
斯文败类应助必毕业采纳,获得10
13秒前
Rita应助HY兑采纳,获得30
13秒前
沉辰发布了新的文献求助10
15秒前
乐乐应助耍酷的梦桃采纳,获得10
15秒前
塔塔发布了新的文献求助10
15秒前
15秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797