Transfer learning for bearing fault diagnosis: adaptive batch normalization and combined optimization method

规范化(社会学) 方位(导航) 计算机科学 断层(地质) 人工神经网络 学习迁移 时域 数据挖掘 人工智能 机器学习 社会学 地震学 人类学 地质学 计算机视觉
作者
Xueyi Li,Kaiyu Su,Daiyou Li,Qiushi He,Zhijie Xie,Xiangwei Kong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 046106-046106 被引量:2
标识
DOI:10.1088/1361-6501/ad19c2
摘要

Abstract Bearings are crucial components in rotating machinery equipment. Bearing fault diagnosis plays a significant role in the maintenance of mechanical equipment. This study aims to enhance the practicality of bearing fault diagnosis to meet real-world engineering requirements. In real industrial environments, the continuously changing operating conditions such as equipment speed and load pose challenges in collecting data for bearing fault diagnosis, as it is challenging to gather data for all operational conditions. This paper proposes a transfer learning approach for bearing fault diagnosis based on adaptive batch normalization (AdaBN) and a combined optimization algorithm. Initially, a ResNet neural network is trained using source domain data. Subsequently, the trained model is transferred to the target domain, where AdaBN is applied to mitigate domain shift issues. Furthermore, a combined optimization algorithm is employed during model training to enhance fault diagnosis accuracy. Experimental validation is conducted using bearing data from the Case Western Reserve University dataset and Northeast Forestry University (NEFU) dataset. Comparison shows that AdaBN and the combined optimization algorithm improve bearing fault diagnosis accuracy effectively. On the NEFU dataset, the diagnostic accuracy exceeds 95%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
转身在街角完成签到,获得积分10
1秒前
shore完成签到,获得积分10
1秒前
善良苞络发布了新的文献求助10
1秒前
Jeff发布了新的文献求助10
1秒前
粗犷的书萱完成签到,获得积分10
2秒前
悦耳一江完成签到,获得积分10
2秒前
沉静的浩然完成签到,获得积分10
2秒前
2秒前
科研通AI5应助aaac采纳,获得10
3秒前
fff应助Tony12采纳,获得20
3秒前
4秒前
4秒前
4秒前
4秒前
Silence发布了新的文献求助10
5秒前
5秒前
124578完成签到,获得积分10
5秒前
cc完成签到,获得积分10
5秒前
CodeCraft应助SMINI采纳,获得10
5秒前
南国应助reck采纳,获得10
6秒前
6秒前
李爱国应助阿泽采纳,获得10
7秒前
善学以致用应助caimiemie采纳,获得10
7秒前
风趣麦片发布了新的文献求助30
7秒前
希望天下0贩的0应助phoenix采纳,获得10
8秒前
steve完成签到 ,获得积分10
9秒前
animenz完成签到,获得积分10
9秒前
单薄天亦完成签到,获得积分10
9秒前
9秒前
9秒前
Oak完成签到 ,获得积分10
10秒前
yunhuang发布了新的文献求助10
10秒前
10秒前
11秒前
玥来玥好完成签到,获得积分10
11秒前
科研通AI5应助mochou采纳,获得10
11秒前
12秒前
NexusExplorer应助Jeff采纳,获得10
12秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
The theory of nuclear magnetic relaxation in liquids 2000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541285
求助须知:如何正确求助?哪些是违规求助? 3118468
关于积分的说明 9336103
捐赠科研通 2816457
什么是DOI,文献DOI怎么找? 1548412
邀请新用户注册赠送积分活动 721501
科研通“疑难数据库(出版商)”最低求助积分说明 712690