衰减
电磁屏蔽
电磁干扰
材料科学
电磁干扰
微波食品加热
背景(考古学)
光电子学
复合材料
光学
计算机科学
物理
电信
地质学
古生物学
作者
Feiyue Hu,Haifeng Tang,Fushuo Wu,Pei Dao Ding,Peigen Zhang,Wenwen Sun,Longzhu Cai,Bingbing Fan,Rui Zhang,ZhengMing Sun
标识
DOI:10.1002/smtd.202301476
摘要
Abstract In the ever‐evolving landscape of complex electromagnetic (EM) environments, the demand for EM‐attenuating materials with multiple functionalities has grown. 1D metals, known for their high conductivity and ability to form networks that facilitate electron migration, stand out as promising candidates for EM attenuation. Presently, they find primary use in electromagnetic interference (EMI) shielding, but achieving a dual‐purpose application for EMI shielding and microwave absorption (MA) remains a challenge. In this context, Sn whiskers derived from the Ti 2 SnC MAX phase exhibit exceptional EMI shielding and MA properties. A minimum reflection loss of −44.82 dB is achievable at lower loading ratios, while higher loading ratios yield efficient EMI shielding effectiveness of 42.78 dB. These qualities result from a delicate balance between impedance matching and EM energy attenuation via adjustable conductive networks; and the enhanced interfacial polarization effect at the cylindrical heterogeneous interface between Sn and SnO 2 , visually characterized through off‐axis electron holography, also contributes to the impressive performance. Considering the compositional diversity of MAX phases and the scalable fabrication approach with environmental friendliness, this study provides a valuable pathway to multifunctional EM attenuating materials based on 1D metals.
科研通智能强力驱动
Strongly Powered by AbleSci AI