Self-supervised Edge Structure Learning for Multi-view Stereo and Parallel Optimization

计算机科学 人工智能 GSM演进的增强数据速率 计算机视觉 计算机图形学(图像)
作者
Li Pan,Shiqian Wu,Xitie Zhang,Yuxin Peng,Boyang Zhang,B. Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 448-461
标识
DOI:10.1007/978-3-031-53311-2_33
摘要

Recent studies have witnessed that many self-supervised methods obtain clear progress on the multi-view stereo (MVS). However, existing methods ignore the edge structure information of the reconstructed target, which includes the outer silhouette and the edge information of the internal structure. This may lead to less satisfactory edges and completeness of the reconstruction result. To solve this problem, we propose an extractor for extracting edge structure maps, and we innovatively design an edge structure Loss to constrain the network to pay more attention to edge structure features of the reference view to improve the texture details of the reconstruction results. Specially, we utilize the idea of constructing cost volume in multi-view stereo and warp the edge structure map of the source view to the reference view to provide reliable self-supervision. In addition, we design a masking mechanism that combines local and global properties, which ensures robustness and improves the reconstruction completeness of the model for complex samples. Furthermore, we adopt an effective parallel acceleration approach to improve the training speed and reconstruction efficiency. Extensive experiments on the DTU and Tanks &Temples benchmarks demonstrate that our method improves both accuracy and completeness in comparison with other unsupervised work. In addition, our parallel method improves efficiency while ensuring accuracy. The code will be published.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赢赢发布了新的文献求助100
1秒前
1秒前
田様应助笑点低的元枫采纳,获得10
2秒前
zhengshanbei完成签到,获得积分10
4秒前
4秒前
AAACharlie发布了新的文献求助20
5秒前
evelsing发布了新的文献求助10
5秒前
鸿汉完成签到,获得积分10
6秒前
ghh完成签到,获得积分10
7秒前
7秒前
冷香咖啡关注了科研通微信公众号
8秒前
量子星尘发布了新的文献求助10
8秒前
ltc0728发布了新的文献求助10
8秒前
9秒前
共享精神应助小七采纳,获得10
10秒前
emma发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
ssxw发布了新的文献求助10
13秒前
Aurora完成签到,获得积分10
13秒前
13秒前
chen发布了新的文献求助10
15秒前
gyd发布了新的文献求助10
15秒前
15秒前
16秒前
Orange应助早睡不掉头发采纳,获得10
16秒前
NikiJu完成签到,获得积分10
16秒前
msn00完成签到,获得积分10
16秒前
Dr_Zhang完成签到 ,获得积分10
16秒前
ding应助伶俐的夜香采纳,获得10
17秒前
fangchenxi完成签到,获得积分10
17秒前
ltc0728完成签到,获得积分10
17秒前
17秒前
言希发布了新的文献求助10
18秒前
18秒前
Master发布了新的文献求助10
19秒前
19秒前
坦率的匪应助优雅翎采纳,获得10
19秒前
香蕉觅云应助林屿溪采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182