Self-supervised Edge Structure Learning for Multi-view Stereo and Parallel Optimization

计算机科学 人工智能 GSM演进的增强数据速率 计算机视觉 计算机图形学(图像)
作者
Li Pan,Shiqian Wu,Xitie Zhang,Yuxin Peng,Boyang Zhang,B. Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 448-461
标识
DOI:10.1007/978-3-031-53311-2_33
摘要

Recent studies have witnessed that many self-supervised methods obtain clear progress on the multi-view stereo (MVS). However, existing methods ignore the edge structure information of the reconstructed target, which includes the outer silhouette and the edge information of the internal structure. This may lead to less satisfactory edges and completeness of the reconstruction result. To solve this problem, we propose an extractor for extracting edge structure maps, and we innovatively design an edge structure Loss to constrain the network to pay more attention to edge structure features of the reference view to improve the texture details of the reconstruction results. Specially, we utilize the idea of constructing cost volume in multi-view stereo and warp the edge structure map of the source view to the reference view to provide reliable self-supervision. In addition, we design a masking mechanism that combines local and global properties, which ensures robustness and improves the reconstruction completeness of the model for complex samples. Furthermore, we adopt an effective parallel acceleration approach to improve the training speed and reconstruction efficiency. Extensive experiments on the DTU and Tanks &Temples benchmarks demonstrate that our method improves both accuracy and completeness in comparison with other unsupervised work. In addition, our parallel method improves efficiency while ensuring accuracy. The code will be published.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
121完成签到,获得积分20
刚刚
1秒前
执着千风完成签到,获得积分10
2秒前
2秒前
Kumple发布了新的文献求助10
3秒前
3秒前
丘比特应助面面采纳,获得10
4秒前
5秒前
星辰大海应助酷炫雅青采纳,获得10
7秒前
abc发布了新的文献求助10
7秒前
7秒前
科目三应助江峰采纳,获得10
8秒前
8秒前
8秒前
9秒前
星星发布了新的文献求助10
12秒前
12秒前
yanhuazi发布了新的文献求助10
15秒前
脑洞疼应助有魅力魂幽采纳,获得10
15秒前
16秒前
17秒前
mocheer完成签到,获得积分10
18秒前
xiaoma发布了新的文献求助10
19秒前
ding应助努努酱采纳,获得10
20秒前
21秒前
苏书白应助校长兼体委采纳,获得10
22秒前
颜沛文发布了新的文献求助10
22秒前
22秒前
bubble完成签到 ,获得积分10
23秒前
彭于晏应助sun采纳,获得10
23秒前
fly the bike应助星星气球采纳,获得10
24秒前
24秒前
脑洞疼应助飓风卡塔琳娜采纳,获得10
24秒前
无花果应助xiaoma采纳,获得10
25秒前
你在说神马完成签到 ,获得积分10
26秒前
abc完成签到,获得积分20
27秒前
江峰发布了新的文献求助10
27秒前
萌萌哒完成签到,获得积分10
28秒前
天天快乐应助刘四毛采纳,获得10
28秒前
搜集达人应助认真的画板采纳,获得10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721