光子学
计算机科学
光子集成电路
硅光子学
电子工程
逻辑门
加法器
光学计算
数字电子学
和大门
异或门
传输(电信)
电子线路
CMOS芯片
工程类
电气工程
电信
物理
光电子学
作者
Fakhriyya Mammadova,Berkay Neşeli,Junhyeong Kim,Jae‐Yong Kim,Seokjin Hong,Jinhyeong Yoon,Hyo‐Hoon Park,Hamza Kurt
摘要
The field of electronics and digital technology is constantly changing, and logic gates continue to play a crucial role in it. In this dynamic environment, photonic gates offer a variety of advantages such as signal transmission over long distances with minimal loss, compactness, and high-speed data processing. As such, photonic logic gates are paving the way for the development of photonic computing; however, their integration into high-performance systems remains a challenge. To address this problem, we proposed Silicon-photonics based analog signal optical logic operations utilizing complex interference phenomena. The study deals with the wave analysis using the finite-difference time-domain method and inverse design technique to develop topologically-optimized scalable photonic logic gates and their complex combinations. In our study, we designed the fundamental OR, AND, NOT gates and achieved a good contrast ratio greater than 17 dB in terms of the devices' transmission for the wavelength range of 1520-1600 nm. We could also demonstrate their successful integration to construct a half-adder and XOR gate. This represents a significant advancement in the search for effective photonic computing and also highlights the potential for these structures to be used as the foundation for more complex and sophisticated on-chip photonic computing architectures in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI