已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differentiation of acute coronary syndrome with radiomics of pericoronary adipose tissue

冠状动脉疾病 急性冠脉综合征 无线电技术 内科学 医学 心脏病学 扬抑 脂肪组织 曲线下面积 计算机辅助设计 右冠状动脉 动脉 放射科 心肌梗塞 冠状动脉造影 生物 生物化学
作者
Mengyuan Jing,Huaze Xi,Jianqing Sun,Hao Zhu,Liangna Deng,Tao Han,Bin Zhang,Yuting Zhang,Junlin Zhou
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1156): 850-858 被引量:2
标识
DOI:10.1093/bjr/tqae032
摘要

Abstract Objective To assess the potential values of radiomics signatures of pericoronary adipose tissue (PCAT) in identifying patients with acute coronary syndrome (ACS). Methods In total, 149, 227, and 244 patients were clinically diagnosed with ACS, chronic coronary syndrome (CCS), and without coronary artery disease (CAD), respectively, and were retrospectively analysed and randomly divided into training and testing cohorts at a 2:1 ratio. From the PCATs of the proximal left anterior descending branch, left circumflex branch, and right coronary artery (RCA), the pericoronary fat attenuation index (FAI) value and radiomics signatures were calculated, among which features closely related to ACS were screened out. The ACS differentiation models AC1, AC2, AC3, AN1, AN2, and AN3 were constructed based on the FAI value of RCA and the final screened out first-order and texture features, respectively. Results The FAI values were all higher in patients with ACS than in those with CCS and no CAD (all P < .05). For the identification of ACS and CCS, the area-under-the-curve (AUC) values of AC1, AC2, and AC3 were 0.92, 0.94, and 0.91 and 0.91, 0.86, and 0.88 in the training and testing cohorts, respectively. For the identification of ACS and no CAD, the AUC values of AN1, AN2, and AN3 were 0.95, 0.94, and 0.94 and 0.93, 0.87, and 0.89 in the training and testing cohorts, respectively. Conclusions Identification models constructed based on the radiomics signatures of PCAT are expected to be an effective tool for identifying patients with ACS. Advances in knowledge The radiomics signatures of PCAT and FAI values are expected to differentiate between patients with ACS, CCS and those without CAD on imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
天天快乐应助好天气采纳,获得10
4秒前
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
归尘应助科研通管家采纳,获得30
9秒前
归尘应助科研通管家采纳,获得30
9秒前
归尘应助科研通管家采纳,获得30
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
xxfsx应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
归尘应助科研通管家采纳,获得30
9秒前
10秒前
淳于惜雪完成签到 ,获得积分10
10秒前
10秒前
达布妞发布了新的文献求助10
11秒前
-17完成签到 ,获得积分10
11秒前
12秒前
小马甲应助直率孤风采纳,获得10
13秒前
领导范儿应助Rzozsye采纳,获得10
15秒前
chen完成签到,获得积分10
16秒前
ifly发布了新的文献求助10
16秒前
17秒前
CodeCraft应助agf采纳,获得10
18秒前
领导范儿应助ZBQ采纳,获得10
18秒前
充电宝应助火鸡味锅巴采纳,获得10
20秒前
April完成签到,获得积分10
20秒前
君兰发布了新的文献求助10
21秒前
在水一方应助misaka采纳,获得10
21秒前
研研研究不出完成签到 ,获得积分10
22秒前
Bin发布了新的文献求助10
22秒前
好天气发布了新的文献求助10
23秒前
ifly完成签到,获得积分10
25秒前
26秒前
科研通AI2S应助ifly采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279