Differentiation of acute coronary syndrome with radiomics of pericoronary adipose tissue

冠状动脉疾病 急性冠脉综合征 无线电技术 内科学 医学 心脏病学 扬抑 脂肪组织 曲线下面积 计算机辅助设计 右冠状动脉 动脉 放射科 心肌梗塞 冠状动脉造影 生物 生物化学
作者
Mengyuan Jing,Huaze Xi,Jianqing Sun,Hao Zhu,Liangna Deng,Tao Han,Bin Zhang,Yuting Zhang,Junlin Zhou
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1156): 850-858 被引量:2
标识
DOI:10.1093/bjr/tqae032
摘要

Abstract Objective To assess the potential values of radiomics signatures of pericoronary adipose tissue (PCAT) in identifying patients with acute coronary syndrome (ACS). Methods In total, 149, 227, and 244 patients were clinically diagnosed with ACS, chronic coronary syndrome (CCS), and without coronary artery disease (CAD), respectively, and were retrospectively analysed and randomly divided into training and testing cohorts at a 2:1 ratio. From the PCATs of the proximal left anterior descending branch, left circumflex branch, and right coronary artery (RCA), the pericoronary fat attenuation index (FAI) value and radiomics signatures were calculated, among which features closely related to ACS were screened out. The ACS differentiation models AC1, AC2, AC3, AN1, AN2, and AN3 were constructed based on the FAI value of RCA and the final screened out first-order and texture features, respectively. Results The FAI values were all higher in patients with ACS than in those with CCS and no CAD (all P < .05). For the identification of ACS and CCS, the area-under-the-curve (AUC) values of AC1, AC2, and AC3 were 0.92, 0.94, and 0.91 and 0.91, 0.86, and 0.88 in the training and testing cohorts, respectively. For the identification of ACS and no CAD, the AUC values of AN1, AN2, and AN3 were 0.95, 0.94, and 0.94 and 0.93, 0.87, and 0.89 in the training and testing cohorts, respectively. Conclusions Identification models constructed based on the radiomics signatures of PCAT are expected to be an effective tool for identifying patients with ACS. Advances in knowledge The radiomics signatures of PCAT and FAI values are expected to differentiate between patients with ACS, CCS and those without CAD on imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西公主完成签到,获得积分10
2秒前
2秒前
7秒前
LL爱读书发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
liyi完成签到,获得积分10
9秒前
9秒前
xiao发布了新的文献求助10
11秒前
心海完成签到,获得积分10
13秒前
莫离完成签到,获得积分10
14秒前
14秒前
纯良可可豆完成签到,获得积分10
15秒前
赘婿应助xiao采纳,获得10
19秒前
淘淘完成签到,获得积分10
19秒前
思源应助cc采纳,获得10
20秒前
内向的小凡完成签到,获得积分0
20秒前
11111111111111完成签到,获得积分10
21秒前
桐桐应助纯良可可豆采纳,获得10
22秒前
木子26年要毕业完成签到 ,获得积分10
24秒前
mafei发布了新的文献求助10
24秒前
小熊饼干发布了新的文献求助10
25秒前
迪克大完成签到,获得积分10
26秒前
29秒前
文刀发布了新的文献求助20
30秒前
蜘蛛侠发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
大个应助温暖寻雪采纳,获得10
33秒前
情怀应助兴奋迎彤采纳,获得10
33秒前
33秒前
蔡媛嫄发布了新的文献求助10
36秒前
LL爱读书完成签到,获得积分10
37秒前
Betty发布了新的文献求助10
38秒前
40秒前
慕青应助科研通管家采纳,获得10
43秒前
大模型应助科研通管家采纳,获得10
44秒前
Lucas应助科研通管家采纳,获得10
44秒前
情怀应助科研通管家采纳,获得10
44秒前
bkagyin应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
Orange应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534713
关于积分的说明 14146435
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441690
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410579