Differentiation of acute coronary syndrome with radiomics of pericoronary adipose tissue

冠状动脉疾病 急性冠脉综合征 无线电技术 内科学 医学 心脏病学 扬抑 脂肪组织 曲线下面积 计算机辅助设计 右冠状动脉 动脉 放射科 心肌梗塞 冠状动脉造影 生物 生物化学
作者
Mengyuan Jing,Huaze Xi,Jianqing Sun,Hao Zhu,Liangna Deng,Tao Han,Bin Zhang,Yuting Zhang,Junlin Zhou
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1156): 850-858 被引量:2
标识
DOI:10.1093/bjr/tqae032
摘要

Abstract Objective To assess the potential values of radiomics signatures of pericoronary adipose tissue (PCAT) in identifying patients with acute coronary syndrome (ACS). Methods In total, 149, 227, and 244 patients were clinically diagnosed with ACS, chronic coronary syndrome (CCS), and without coronary artery disease (CAD), respectively, and were retrospectively analysed and randomly divided into training and testing cohorts at a 2:1 ratio. From the PCATs of the proximal left anterior descending branch, left circumflex branch, and right coronary artery (RCA), the pericoronary fat attenuation index (FAI) value and radiomics signatures were calculated, among which features closely related to ACS were screened out. The ACS differentiation models AC1, AC2, AC3, AN1, AN2, and AN3 were constructed based on the FAI value of RCA and the final screened out first-order and texture features, respectively. Results The FAI values were all higher in patients with ACS than in those with CCS and no CAD (all P < .05). For the identification of ACS and CCS, the area-under-the-curve (AUC) values of AC1, AC2, and AC3 were 0.92, 0.94, and 0.91 and 0.91, 0.86, and 0.88 in the training and testing cohorts, respectively. For the identification of ACS and no CAD, the AUC values of AN1, AN2, and AN3 were 0.95, 0.94, and 0.94 and 0.93, 0.87, and 0.89 in the training and testing cohorts, respectively. Conclusions Identification models constructed based on the radiomics signatures of PCAT are expected to be an effective tool for identifying patients with ACS. Advances in knowledge The radiomics signatures of PCAT and FAI values are expected to differentiate between patients with ACS, CCS and those without CAD on imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
常常完成签到 ,获得积分10
1秒前
1秒前
英姑应助zhh采纳,获得10
2秒前
2秒前
微风完成签到,获得积分10
2秒前
yannis2020发布了新的文献求助10
2秒前
wangyuchen发布了新的文献求助10
3秒前
领导范儿应助SMILE121235采纳,获得10
3秒前
樂楽完成签到,获得积分20
3秒前
初遇之时最暖完成签到,获得积分10
3秒前
海海完成签到,获得积分10
3秒前
4秒前
4秒前
epmoctzyw完成签到 ,获得积分10
4秒前
唠叨的水风完成签到,获得积分10
4秒前
lll发布了新的文献求助10
4秒前
xiaobao完成签到,获得积分10
4秒前
谦让的仇血完成签到,获得积分10
4秒前
4秒前
4秒前
lullaby完成签到,获得积分10
5秒前
木子小样发布了新的文献求助10
5秒前
5秒前
核桃发布了新的文献求助30
5秒前
NexusExplorer应助NXK采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI2S应助花生酱采纳,获得10
6秒前
锦李完成签到,获得积分10
6秒前
长情立诚完成签到,获得积分10
6秒前
善学以致用应助yannis2020采纳,获得10
6秒前
Cyrus完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
小璐璐呀发布了新的文献求助10
7秒前
李健的小迷弟应助111采纳,获得10
7秒前
依依发布了新的文献求助30
7秒前
高丽参完成签到,获得积分10
7秒前
julienCCC完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219