Differentiation of acute coronary syndrome with radiomics of pericoronary adipose tissue

冠状动脉疾病 急性冠脉综合征 无线电技术 内科学 医学 心脏病学 扬抑 脂肪组织 曲线下面积 计算机辅助设计 右冠状动脉 动脉 放射科 心肌梗塞 冠状动脉造影 生物 生物化学
作者
Mengyuan Jing,Huaze Xi,Jianqing Sun,Hao Zhu,Liangna Deng,Tao Han,Bin Zhang,Yuting Zhang,Junlin Zhou
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1156): 850-858 被引量:2
标识
DOI:10.1093/bjr/tqae032
摘要

Abstract Objective To assess the potential values of radiomics signatures of pericoronary adipose tissue (PCAT) in identifying patients with acute coronary syndrome (ACS). Methods In total, 149, 227, and 244 patients were clinically diagnosed with ACS, chronic coronary syndrome (CCS), and without coronary artery disease (CAD), respectively, and were retrospectively analysed and randomly divided into training and testing cohorts at a 2:1 ratio. From the PCATs of the proximal left anterior descending branch, left circumflex branch, and right coronary artery (RCA), the pericoronary fat attenuation index (FAI) value and radiomics signatures were calculated, among which features closely related to ACS were screened out. The ACS differentiation models AC1, AC2, AC3, AN1, AN2, and AN3 were constructed based on the FAI value of RCA and the final screened out first-order and texture features, respectively. Results The FAI values were all higher in patients with ACS than in those with CCS and no CAD (all P < .05). For the identification of ACS and CCS, the area-under-the-curve (AUC) values of AC1, AC2, and AC3 were 0.92, 0.94, and 0.91 and 0.91, 0.86, and 0.88 in the training and testing cohorts, respectively. For the identification of ACS and no CAD, the AUC values of AN1, AN2, and AN3 were 0.95, 0.94, and 0.94 and 0.93, 0.87, and 0.89 in the training and testing cohorts, respectively. Conclusions Identification models constructed based on the radiomics signatures of PCAT are expected to be an effective tool for identifying patients with ACS. Advances in knowledge The radiomics signatures of PCAT and FAI values are expected to differentiate between patients with ACS, CCS and those without CAD on imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Square完成签到,获得积分10
1秒前
陶醉山灵发布了新的文献求助10
1秒前
科研小能手完成签到,获得积分10
1秒前
pick发布了新的文献求助200
2秒前
2秒前
2秒前
2秒前
帅哥发布了新的文献求助60
2秒前
小猴子应助Jenna采纳,获得10
2秒前
汉堡包应助chliyong采纳,获得10
3秒前
3秒前
李李李发布了新的文献求助10
3秒前
liu完成签到,获得积分10
4秒前
willlee完成签到 ,获得积分10
5秒前
Chocolat_Chaud完成签到,获得积分10
5秒前
Yan关闭了Yan文献求助
5秒前
老白完成签到,获得积分10
5秒前
程程发布了新的文献求助10
6秒前
zhaozhao完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
科研小白发布了新的文献求助10
8秒前
乐乐应助Xiaomin0335采纳,获得10
9秒前
9秒前
9秒前
重要的雪巧关注了科研通微信公众号
9秒前
9秒前
隐形曼青应助叫滚滚采纳,获得10
10秒前
10秒前
yanjiusheng发布了新的文献求助10
10秒前
善学以致用应助cailiaokexue采纳,获得10
10秒前
南方发布了新的文献求助30
11秒前
wanci应助或许度采纳,获得10
11秒前
13秒前
13秒前
领导范儿应助木偶采纳,获得10
13秒前
周浩宇发布了新的文献求助10
13秒前
jj完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532228
求助须知:如何正确求助?哪些是违规求助? 4620974
关于积分的说明 14575976
捐赠科研通 4560785
什么是DOI,文献DOI怎么找? 2498967
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218