Differentiation of acute coronary syndrome with radiomics of pericoronary adipose tissue

冠状动脉疾病 急性冠脉综合征 无线电技术 内科学 医学 心脏病学 扬抑 脂肪组织 曲线下面积 计算机辅助设计 右冠状动脉 动脉 放射科 心肌梗塞 冠状动脉造影 生物 生物化学
作者
Mengyuan Jing,Huaze Xi,Jianqing Sun,Hao Zhu,Liangna Deng,Tao Han,Bin Zhang,Yuting Zhang,Junlin Zhou
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1156): 850-858 被引量:2
标识
DOI:10.1093/bjr/tqae032
摘要

Abstract Objective To assess the potential values of radiomics signatures of pericoronary adipose tissue (PCAT) in identifying patients with acute coronary syndrome (ACS). Methods In total, 149, 227, and 244 patients were clinically diagnosed with ACS, chronic coronary syndrome (CCS), and without coronary artery disease (CAD), respectively, and were retrospectively analysed and randomly divided into training and testing cohorts at a 2:1 ratio. From the PCATs of the proximal left anterior descending branch, left circumflex branch, and right coronary artery (RCA), the pericoronary fat attenuation index (FAI) value and radiomics signatures were calculated, among which features closely related to ACS were screened out. The ACS differentiation models AC1, AC2, AC3, AN1, AN2, and AN3 were constructed based on the FAI value of RCA and the final screened out first-order and texture features, respectively. Results The FAI values were all higher in patients with ACS than in those with CCS and no CAD (all P < .05). For the identification of ACS and CCS, the area-under-the-curve (AUC) values of AC1, AC2, and AC3 were 0.92, 0.94, and 0.91 and 0.91, 0.86, and 0.88 in the training and testing cohorts, respectively. For the identification of ACS and no CAD, the AUC values of AN1, AN2, and AN3 were 0.95, 0.94, and 0.94 and 0.93, 0.87, and 0.89 in the training and testing cohorts, respectively. Conclusions Identification models constructed based on the radiomics signatures of PCAT are expected to be an effective tool for identifying patients with ACS. Advances in knowledge The radiomics signatures of PCAT and FAI values are expected to differentiate between patients with ACS, CCS and those without CAD on imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小虫发布了新的文献求助10
1秒前
苹果王子6699完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Lucas应助小平头啤酒肚采纳,获得10
3秒前
3秒前
无极微光应助ps采纳,获得20
4秒前
4秒前
你好发布了新的文献求助10
5秒前
7秒前
LIU完成签到,获得积分10
7秒前
共享精神应助陀飞轮采纳,获得10
10秒前
yaoyao发布了新的文献求助10
10秒前
华凯完成签到,获得积分10
11秒前
赘婿应助黄胖胖采纳,获得10
12秒前
多非计划完成签到,获得积分10
12秒前
楚舜华完成签到,获得积分10
14秒前
CodeCraft应助晶莹黎采纳,获得10
15秒前
15秒前
he关闭了he文献求助
15秒前
田様应助谨慎的寒松采纳,获得10
16秒前
CodeCraft应助谨慎的寒松采纳,获得10
16秒前
酷波er应助谨慎的寒松采纳,获得10
16秒前
科研通AI2S应助谨慎的寒松采纳,获得30
16秒前
an发布了新的文献求助10
17秒前
Hello应助1234sxcv采纳,获得10
18秒前
逆麟完成签到,获得积分10
19秒前
踏实伟帮发布了新的文献求助10
19秒前
yaoyao完成签到,获得积分10
19秒前
务实珊完成签到,获得积分10
19秒前
曹广秀完成签到,获得积分10
20秒前
20秒前
shouz发布了新的文献求助20
22秒前
aurevoir完成签到,获得积分10
23秒前
爆杀小白鼠完成签到,获得积分10
23秒前
小明发布了新的文献求助10
24秒前
浅行完成签到,获得积分10
24秒前
24秒前
科研一点也不通完成签到,获得积分20
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735106
求助须知:如何正确求助?哪些是违规求助? 5358396
关于积分的说明 15328586
捐赠科研通 4879501
什么是DOI,文献DOI怎么找? 2621965
邀请新用户注册赠送积分活动 1571157
关于科研通互助平台的介绍 1527933