Contrastive feature-based learning-guided elevated deep reinforcement learning: Developing an imbalanced fault quantitative diagnosis under variable working conditions

强化学习 人工智能 特征(语言学) 断层(地质) 计算机科学 变量(数学) 机器学习 特征学习 模式识别(心理学) 钢筋 工程类 数学 地质学 结构工程 数学分析 哲学 语言学 地震学
作者
Shuilong He,Qianwen Cui,Jinglong Chen,Tongyang Pan,Chaofan Hu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111192-111192 被引量:4
标识
DOI:10.1016/j.ymssp.2024.111192
摘要

Fault diagnosis is subject to the challenge of implementing model learning in the presence of small samples and imbalanced data (i.e., variable operating conditions), which is a fundamental and crucial problem that hinders their applications in real industrial scenarios. Herein, a novel deep reinforcement learning strategy (SIMC-PERDRL) that combines SimCLR and elevated prioritized experience replay (PER) is proposed for machinery fault quantitative diagnosis in non-ideal data scenarios. First, unsupervised contrastive learning pre-trains the feature extraction layer to mine optimal discriminative features with more optimal intra-class compactness and inter-class separability to reduce inter-class overlap. Second, the experience priority is quantified by reward and TD error to enhance the learning frequency of rare high-value samples; the reward function is skillfully constructed using adaptive unbalanced distribution, which immensely increases the agent's sensitivity to minorities, and enhances the model's domain adaptability by dynamically fine-tuning the agent's decision through real-time feedback. Moreover, ResNet utilizes the Convolutional Block Attention Module (CBAM) to construct a deep Q-network; thus, the agent's learning ability of critical fault features is enhanced. Finally, SIMC-PERDRL was validated online using three rotating machinery datasets. The results indicate that the method can automatically realize accurate qualitative identification under different rotational speeds, different loads, and class unbalanced conditions, with excellent effectiveness, stability, and versatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1021发布了新的文献求助10
刚刚
舒适的鹤轩完成签到 ,获得积分10
刚刚
刚刚
居遥发布了新的文献求助10
刚刚
kakafan发布了新的文献求助10
刚刚
bqk发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
我是月球上的完成签到,获得积分10
1秒前
小蘑菇应助wysiii采纳,获得10
2秒前
TUYANG发布了新的文献求助30
2秒前
Max发布了新的文献求助30
3秒前
Suzanne完成签到,获得积分10
4秒前
4秒前
zzzzzjzjjjj完成签到,获得积分20
4秒前
嘉嘉琦发布了新的文献求助10
5秒前
Theo完成签到,获得积分10
5秒前
5秒前
Mannone发布了新的文献求助10
5秒前
5秒前
个性的忆梅完成签到,获得积分10
6秒前
应俊完成签到 ,获得积分10
6秒前
123应助科研通管家采纳,获得20
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
啊啊啊发布了新的文献求助10
8秒前
哩哩完成签到,获得积分10
8秒前
Orange应助居遥采纳,获得10
9秒前
Owen应助果果采纳,获得30
9秒前
淡定灰狼发布了新的文献求助10
10秒前
传奇3应助个性的忆梅采纳,获得10
10秒前
mgg完成签到,获得积分20
11秒前
丘比特应助柚子烤饼干采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294936
求助须知:如何正确求助?哪些是违规求助? 2930997
关于积分的说明 8449396
捐赠科研通 2603491
什么是DOI,文献DOI怎么找? 1421135
科研通“疑难数据库(出版商)”最低求助积分说明 660804
邀请新用户注册赠送积分活动 643636