FFCA-YOLO for Small Object Detection in Remote Sensing Images

遥感 目标检测 计算机科学 计算机视觉 人工智能 对象(语法) 辐射测量 地质学 模式识别(心理学)
作者
Yin Zhang,Mu Ye,Guiyi Zhu,Yong Liu,Pengyu Guo,Junhua Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tgrs.2024.3363057
摘要

Issues such as insufficient feature representation and background confusion make detection tasks for small object in remote sensing arduous. Particularly when the algorithm will be deployed on board for real-time processing, which requires extensive optimization of accuracy and speed under limited computing resources. To tackle these problems, an efficient detector called FFCA-YOLO(Feature enhancement, Fusion and Context Aware YOLO) is proposed in this paper. FFCA-YOLO includes three innovative lightweight and plug-and-play modules: feature enhancement module(FEM), feature fusion module(FFM) and spatial context aware module(SCAM). These three modules improve the network capabilities of local area awareness, multi-scale feature fusion and global association cross channels and space, respectively, while trying to avoid increasing complexity as possible. Thus the weak feature representations of small objects are enhanced and the confusable backgrounds are suppressed. Two public remote sensing datasets(VEDAI and AI-TOD) for small object detection and one self-built dataset(USOD) are used to validate the effectiveness of FFCA-YOLO. The accuracy of FFCA-YOLO reaches 0.748, 0.617 and 0.909(in terms of mAP 50 ) that exceeds several benchmark models and state-of-the-art methods. Meanwhile, the robustness of FFCA-YOLO is also validated under different simulated degradation conditions. Moreover, to further reduce computational resource consumption while ensuring efficiency, a lite version of FFCA-YOLO(L-FFCA-YOLO) is optimized by reconstructing the backbone and neck of FFCA-YOLO based on partial convolution. L-FFCA-YOLO has faster speed, smaller parameter scale, lower computing power requirement but little accuracy loss compared with FFCA-YOLO. The source code will be available at https://github.com/yemu1138178251/FFCA-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪花发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得40
1秒前
asdfqwer应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
迷路海蓝应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Chenyan775199发布了新的文献求助10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
Garry应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
一只老呆猪完成签到,获得积分10
2秒前
xxx完成签到 ,获得积分10
2秒前
遥山完成签到,获得积分20
2秒前
4秒前
4秒前
lin发布了新的文献求助10
4秒前
叽里呱啦发布了新的文献求助10
4秒前
chen完成签到,获得积分10
4秒前
研友_VZG7GZ应助俊秀的思山采纳,获得10
4秒前
maox1aoxin应助陈晨采纳,获得30
5秒前
超越radiology完成签到,获得积分10
5秒前
可爱的函函应助DQ8733采纳,获得10
6秒前
6秒前
6秒前
Zhen Wang完成签到,获得积分10
6秒前
可乐应助研友_nPPaVn采纳,获得10
7秒前
sduweiyu完成签到 ,获得积分10
8秒前
共享精神应助郝宝真采纳,获得10
8秒前
CuP发布了新的文献求助10
9秒前
qiqi完成签到,获得积分10
9秒前
ZSWAA完成签到,获得积分10
9秒前
忙碌的数学人完成签到,获得积分10
10秒前
zhing发布了新的文献求助10
10秒前
li完成签到 ,获得积分10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134291
求助须知:如何正确求助?哪些是违规求助? 2785137
关于积分的说明 7770495
捐赠科研通 2440760
什么是DOI,文献DOI怎么找? 1297506
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792