FFCA-YOLO for Small Object Detection in Remote Sensing Images

稳健性(进化) 目标检测 计算机科学 特征(语言学) 计算机视觉 背景(考古学) 人工智能 水准点(测量) 数据挖掘 模式识别(心理学) 生物 基因 哲学 古生物学 化学 地理 生物化学 语言学 大地测量学
作者
Yin Zhang,Mu Ye,Guiyi Zhu,Yong Liu,Pengyu Guo,Junhua Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:62
标识
DOI:10.1109/tgrs.2024.3363057
摘要

Issues such as insufficient feature representation and background confusion make detection tasks for small object in remote sensing arduous. Particularly when the algorithm will be deployed on board for real-time processing, which requires extensive optimization of accuracy and speed under limited computing resources. To tackle these problems, an efficient detector called FFCA-YOLO(Feature enhancement, Fusion and Context Aware YOLO) is proposed in this paper. FFCA-YOLO includes three innovative lightweight and plug-and-play modules: feature enhancement module(FEM), feature fusion module(FFM) and spatial context aware module(SCAM). These three modules improve the network capabilities of local area awareness, multi-scale feature fusion and global association cross channels and space, respectively, while trying to avoid increasing complexity as possible. Thus the weak feature representations of small objects are enhanced and the confusable backgrounds are suppressed. Two public remote sensing datasets(VEDAI and AI-TOD) for small object detection and one self-built dataset(USOD) are used to validate the effectiveness of FFCA-YOLO. The accuracy of FFCA-YOLO reaches 0.748, 0.617 and 0.909(in terms of mAP 50 ) that exceeds several benchmark models and state-of-the-art methods. Meanwhile, the robustness of FFCA-YOLO is also validated under different simulated degradation conditions. Moreover, to further reduce computational resource consumption while ensuring efficiency, a lite version of FFCA-YOLO(L-FFCA-YOLO) is optimized by reconstructing the backbone and neck of FFCA-YOLO based on partial convolution. L-FFCA-YOLO has faster speed, smaller parameter scale, lower computing power requirement but little accuracy loss compared with FFCA-YOLO. The source code will be available at https://github.com/yemu1138178251/FFCA-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
刚刚
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
伶俐碧萱完成签到 ,获得积分10
1秒前
1秒前
2秒前
王小磊发布了新的文献求助10
2秒前
3秒前
天天开心完成签到,获得积分10
3秒前
RockLee发布了新的文献求助10
3秒前
看不了一点文献完成签到,获得积分10
4秒前
研友_pnx37L发布了新的文献求助10
4秒前
yc完成签到,获得积分10
4秒前
4秒前
暮寻屿苗完成签到 ,获得积分10
5秒前
5秒前
lizi发布了新的文献求助10
5秒前
5秒前
万能图书馆应助时尚俊驰采纳,获得10
5秒前
qianlan发布了新的文献求助10
6秒前
7秒前
tangzl发布了新的文献求助10
7秒前
8秒前
易槐发布了新的文献求助10
8秒前
研友_VZG7GZ应助we采纳,获得30
9秒前
丘比特应助MM采纳,获得10
9秒前
独特的沛凝完成签到,获得积分10
9秒前
xhsz1111发布了新的文献求助10
11秒前
qianlan完成签到,获得积分10
12秒前
谢谢发布了新的文献求助10
12秒前
lizi完成签到,获得积分10
13秒前
livresse完成签到,获得积分10
14秒前
14秒前
orixero应助hiimcwn采纳,获得10
15秒前
乐乐应助无情的盼兰采纳,获得10
15秒前
16秒前
丘比特应助三岁半采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745349
求助须知:如何正确求助?哪些是违规求助? 3288288
关于积分的说明 10058133
捐赠科研通 3004507
什么是DOI,文献DOI怎么找? 1649669
邀请新用户注册赠送积分活动 785484
科研通“疑难数据库(出版商)”最低求助积分说明 751108