FFCA-YOLO for Small Object Detection in Remote Sensing Images

稳健性(进化) 目标检测 计算机科学 特征(语言学) 计算机视觉 背景(考古学) 人工智能 水准点(测量) 数据挖掘 模式识别(心理学) 古生物学 生物化学 化学 语言学 哲学 大地测量学 生物 基因 地理
作者
Yin Zhang,Mu Ye,Guiyi Zhu,Yong Liu,Pengyu Guo,Junhua Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:40
标识
DOI:10.1109/tgrs.2024.3363057
摘要

Issues such as insufficient feature representation and background confusion make detection tasks for small object in remote sensing arduous. Particularly when the algorithm will be deployed on board for real-time processing, which requires extensive optimization of accuracy and speed under limited computing resources. To tackle these problems, an efficient detector called FFCA-YOLO(Feature enhancement, Fusion and Context Aware YOLO) is proposed in this paper. FFCA-YOLO includes three innovative lightweight and plug-and-play modules: feature enhancement module(FEM), feature fusion module(FFM) and spatial context aware module(SCAM). These three modules improve the network capabilities of local area awareness, multi-scale feature fusion and global association cross channels and space, respectively, while trying to avoid increasing complexity as possible. Thus the weak feature representations of small objects are enhanced and the confusable backgrounds are suppressed. Two public remote sensing datasets(VEDAI and AI-TOD) for small object detection and one self-built dataset(USOD) are used to validate the effectiveness of FFCA-YOLO. The accuracy of FFCA-YOLO reaches 0.748, 0.617 and 0.909(in terms of mAP 50 ) that exceeds several benchmark models and state-of-the-art methods. Meanwhile, the robustness of FFCA-YOLO is also validated under different simulated degradation conditions. Moreover, to further reduce computational resource consumption while ensuring efficiency, a lite version of FFCA-YOLO(L-FFCA-YOLO) is optimized by reconstructing the backbone and neck of FFCA-YOLO based on partial convolution. L-FFCA-YOLO has faster speed, smaller parameter scale, lower computing power requirement but little accuracy loss compared with FFCA-YOLO. The source code will be available at https://github.com/yemu1138178251/FFCA-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
威武爆米花完成签到,获得积分10
1秒前
在水一方应助zhaowenxian采纳,获得10
2秒前
SS给SS的求助进行了留言
2秒前
3秒前
5秒前
Linden_bd完成签到 ,获得积分10
5秒前
科研通AI5应助yangyangyang采纳,获得10
5秒前
5秒前
漠北完成签到,获得积分10
5秒前
5秒前
Isabel完成签到 ,获得积分10
6秒前
起风了完成签到,获得积分10
6秒前
7秒前
Zjn-完成签到,获得积分10
7秒前
良辰应助lost采纳,获得10
7秒前
靓丽梦桃完成签到,获得积分20
8秒前
8秒前
0306完成签到,获得积分10
8秒前
李创业完成签到,获得积分10
8秒前
庆次完成签到 ,获得积分10
9秒前
ZY发布了新的文献求助10
9秒前
36456657应助跳跃的罡采纳,获得10
9秒前
36456657应助跳跃的罡采纳,获得10
9秒前
pluto应助跳跃的罡采纳,获得10
9秒前
丘比特应助跳跃的罡采纳,获得10
9秒前
9秒前
左手树完成签到,获得积分10
10秒前
10秒前
踏实的似狮完成签到,获得积分10
10秒前
正直画笔完成签到 ,获得积分10
10秒前
草履虫完成签到 ,获得积分10
11秒前
靓丽梦桃发布了新的文献求助10
11秒前
李创业发布了新的文献求助10
12秒前
炙热冰夏发布了新的文献求助10
12秒前
autobot1完成签到,获得积分10
12秒前
科研通AI5应助111采纳,获得10
12秒前
烟花应助Wang采纳,获得10
12秒前
曼尼发布了新的文献求助10
12秒前
赘婿应助桑姊采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762