亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient and accurate surface defect detection method for quality supervision of wood panels

瓶颈 计算机科学 联营 特征(语言学) 特征提取 人工智能 曲面(拓扑) 木材加工 模式识别(心理学) 工程类 机械工程 嵌入式系统 数学 几何学 哲学 语言学
作者
Zhihao Yi,Lufeng Luo,Qinghua Lu,Mingyou Chen,Wenbo Zhu,Yunzhi Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055209-055209 被引量:3
标识
DOI:10.1088/1361-6501/ad26c9
摘要

Abstract The wood panel processing sector is integral to the landscape of industrial manufacturing, and automated detection of wood panel surface defects has become an important guarantee for improving the efficiency and quality of processing production. However, due to the diverse scales and shapes of wood panel surface defects, as well as their complex and varied colors and texture characteristics, the efforts to efficiently and accurately detect surface defects in wood panels through existing methods have fallen short. Therefore, the paper proposes an enhanced YOLOx-tiny deep learning network for wood panel surface defect detection. We introduce new modules multi-pooling feature fusion module and comprehensive feature extraction module, instead of the original SPP and Bottleneck modules to enhance key feature extraction and reduce the number of computational parameters. The experimental results conducted on the self-constructed wood panel surface defects dataset show that the mAP of our proposed method is 95.01%, which is 9.58% higher than the original YOLOx-tiny network model, and the defects recall is 91.46%, which is 13.21% higher compared to the original network. Meanwhile, the method is able to reduce 12.22% of computational parameters, which effectively improves the efficiency of the detection of surface defects on wood panels. In summary, the proposed intelligent surface defect detection approach for wood panels, which utilizes an enhanced YOLOx-tiny deep learning network, has yielded notable outcomes in enhancing both accuracy and efficiency. This method holds significant practical relevance for the wood panel manufacturing sector, offering the potential to enhance both production efficiency and quality. It also explores the automation and intelligent technology in the process of man-made board processing, which provides a valuable reference for the research in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助成社长采纳,获得10
8秒前
点心完成签到,获得积分10
17秒前
17秒前
成社长发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
joe完成签到 ,获得积分0
1分钟前
852应助pollen采纳,获得10
1分钟前
犹豫的代芙完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
饱满书雁发布了新的文献求助10
2分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
不要命的皮卡丘完成签到,获得积分10
3分钟前
科研通AI5应助张清采纳,获得10
3分钟前
尤尢应助饱满书雁采纳,获得10
3分钟前
3分钟前
张清发布了新的文献求助10
3分钟前
桥桥乔乔完成签到 ,获得积分10
3分钟前
lhr完成签到,获得积分10
4分钟前
高数数完成签到 ,获得积分10
4分钟前
4分钟前
mmmxxxjjj发布了新的文献求助30
4分钟前
4分钟前
pollen发布了新的文献求助10
5分钟前
mmmxxxjjj完成签到,获得积分20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
5分钟前
pollen完成签到,获得积分10
5分钟前
5分钟前
liwang9301完成签到,获得积分10
5分钟前
blenx完成签到,获得积分10
5分钟前
VDC应助苗条绝义采纳,获得30
5分钟前
Link发布了新的文献求助10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562017
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412566
捐赠科研通 2835932
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716865