An efficient and accurate surface defect detection method for quality supervision of wood panels

瓶颈 计算机科学 联营 特征(语言学) 特征提取 人工智能 曲面(拓扑) 木材加工 模式识别(心理学) 工程类 机械工程 嵌入式系统 数学 几何学 哲学 语言学
作者
Zhihao Yi,Lufeng Luo,Qinghua Lu,Mingyou Chen,Wenbo Zhu,Yunzhi Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055209-055209 被引量:3
标识
DOI:10.1088/1361-6501/ad26c9
摘要

Abstract The wood panel processing sector is integral to the landscape of industrial manufacturing, and automated detection of wood panel surface defects has become an important guarantee for improving the efficiency and quality of processing production. However, due to the diverse scales and shapes of wood panel surface defects, as well as their complex and varied colors and texture characteristics, the efforts to efficiently and accurately detect surface defects in wood panels through existing methods have fallen short. Therefore, the paper proposes an enhanced YOLOx-tiny deep learning network for wood panel surface defect detection. We introduce new modules multi-pooling feature fusion module and comprehensive feature extraction module, instead of the original SPP and Bottleneck modules to enhance key feature extraction and reduce the number of computational parameters. The experimental results conducted on the self-constructed wood panel surface defects dataset show that the mAP of our proposed method is 95.01%, which is 9.58% higher than the original YOLOx-tiny network model, and the defects recall is 91.46%, which is 13.21% higher compared to the original network. Meanwhile, the method is able to reduce 12.22% of computational parameters, which effectively improves the efficiency of the detection of surface defects on wood panels. In summary, the proposed intelligent surface defect detection approach for wood panels, which utilizes an enhanced YOLOx-tiny deep learning network, has yielded notable outcomes in enhancing both accuracy and efficiency. This method holds significant practical relevance for the wood panel manufacturing sector, offering the potential to enhance both production efficiency and quality. It also explores the automation and intelligent technology in the process of man-made board processing, which provides a valuable reference for the research in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
4秒前
5秒前
已知中的未知完成签到 ,获得积分10
7秒前
8秒前
斯文觅珍发布了新的文献求助10
8秒前
space完成签到,获得积分10
9秒前
张雷应助科研通管家采纳,获得20
9秒前
科目三应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
1111应助科研通管家采纳,获得10
10秒前
YamDaamCaa应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
10秒前
10秒前
小小叶完成签到,获得积分10
11秒前
11秒前
情怀应助火星上鑫鹏采纳,获得10
11秒前
ZAPAR发布了新的文献求助10
12秒前
闪闪静槐关注了科研通微信公众号
13秒前
似水年华完成签到 ,获得积分10
15秒前
安芝完成签到,获得积分10
16秒前
17秒前
在水一方应助ZAPAR采纳,获得10
18秒前
21秒前
26秒前
Chill完成签到,获得积分20
27秒前
闪闪静槐发布了新的文献求助10
27秒前
ssssssssci完成签到,获得积分10
27秒前
30秒前
张怡博完成签到 ,获得积分10
31秒前
Wang发布了新的文献求助10
31秒前
bkagyin应助GGbound采纳,获得10
32秒前
abcdefg完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662