亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient and accurate surface defect detection method for quality supervision of wood panels

瓶颈 计算机科学 联营 特征(语言学) 特征提取 人工智能 曲面(拓扑) 木材加工 模式识别(心理学) 工程类 机械工程 嵌入式系统 数学 几何学 哲学 语言学
作者
Zhihao Yi,Lufeng Luo,Qinghua Lu,Mingyou Chen,Wenbo Zhu,Yunzhi Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055209-055209 被引量:3
标识
DOI:10.1088/1361-6501/ad26c9
摘要

Abstract The wood panel processing sector is integral to the landscape of industrial manufacturing, and automated detection of wood panel surface defects has become an important guarantee for improving the efficiency and quality of processing production. However, due to the diverse scales and shapes of wood panel surface defects, as well as their complex and varied colors and texture characteristics, the efforts to efficiently and accurately detect surface defects in wood panels through existing methods have fallen short. Therefore, the paper proposes an enhanced YOLOx-tiny deep learning network for wood panel surface defect detection. We introduce new modules multi-pooling feature fusion module and comprehensive feature extraction module, instead of the original SPP and Bottleneck modules to enhance key feature extraction and reduce the number of computational parameters. The experimental results conducted on the self-constructed wood panel surface defects dataset show that the mAP of our proposed method is 95.01%, which is 9.58% higher than the original YOLOx-tiny network model, and the defects recall is 91.46%, which is 13.21% higher compared to the original network. Meanwhile, the method is able to reduce 12.22% of computational parameters, which effectively improves the efficiency of the detection of surface defects on wood panels. In summary, the proposed intelligent surface defect detection approach for wood panels, which utilizes an enhanced YOLOx-tiny deep learning network, has yielded notable outcomes in enhancing both accuracy and efficiency. This method holds significant practical relevance for the wood panel manufacturing sector, offering the potential to enhance both production efficiency and quality. It also explores the automation and intelligent technology in the process of man-made board processing, which provides a valuable reference for the research in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木头完成签到,获得积分10
37秒前
41秒前
51秒前
liam发布了新的文献求助30
57秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
liam完成签到,获得积分10
1分钟前
打打应助七只狐狸采纳,获得10
1分钟前
1分钟前
七只狐狸发布了新的文献求助10
1分钟前
2分钟前
3分钟前
orixero应助天真咖啡豆采纳,获得10
3分钟前
TXZ06完成签到,获得积分10
3分钟前
缓慢的绝施完成签到,获得积分10
3分钟前
3分钟前
3分钟前
ye发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
luo完成签到 ,获得积分20
4分钟前
MchemG完成签到,获得积分0
4分钟前
科研通AI5应助天真咖啡豆采纳,获得10
4分钟前
4分钟前
科研通AI5应助天真咖啡豆采纳,获得10
5分钟前
小幸运完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
懒洋洋发布了新的文献求助10
5分钟前
英俊的铭应助懒洋洋采纳,获得10
5分钟前
蕊蕊蕊完成签到 ,获得积分10
6分钟前
6分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
6分钟前
6分钟前
6分钟前
6分钟前
懒洋洋发布了新的文献求助10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770451
求助须知:如何正确求助?哪些是违规求助? 3315478
关于积分的说明 10176425
捐赠科研通 3030489
什么是DOI,文献DOI怎么找? 1662916
邀请新用户注册赠送积分活动 795249
科研通“疑难数据库(出版商)”最低求助积分说明 756700