An efficient and accurate surface defect detection method for quality supervision of wood panels

瓶颈 计算机科学 联营 特征(语言学) 特征提取 人工智能 曲面(拓扑) 木材加工 模式识别(心理学) 工程类 机械工程 嵌入式系统 数学 几何学 哲学 语言学
作者
Zhihao Yi,Lufeng Luo,Qinghua Lu,Mingyou Chen,Wenbo Zhu,Yunzhi Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055209-055209 被引量:3
标识
DOI:10.1088/1361-6501/ad26c9
摘要

Abstract The wood panel processing sector is integral to the landscape of industrial manufacturing, and automated detection of wood panel surface defects has become an important guarantee for improving the efficiency and quality of processing production. However, due to the diverse scales and shapes of wood panel surface defects, as well as their complex and varied colors and texture characteristics, the efforts to efficiently and accurately detect surface defects in wood panels through existing methods have fallen short. Therefore, the paper proposes an enhanced YOLOx-tiny deep learning network for wood panel surface defect detection. We introduce new modules multi-pooling feature fusion module and comprehensive feature extraction module, instead of the original SPP and Bottleneck modules to enhance key feature extraction and reduce the number of computational parameters. The experimental results conducted on the self-constructed wood panel surface defects dataset show that the mAP of our proposed method is 95.01%, which is 9.58% higher than the original YOLOx-tiny network model, and the defects recall is 91.46%, which is 13.21% higher compared to the original network. Meanwhile, the method is able to reduce 12.22% of computational parameters, which effectively improves the efficiency of the detection of surface defects on wood panels. In summary, the proposed intelligent surface defect detection approach for wood panels, which utilizes an enhanced YOLOx-tiny deep learning network, has yielded notable outcomes in enhancing both accuracy and efficiency. This method holds significant practical relevance for the wood panel manufacturing sector, offering the potential to enhance both production efficiency and quality. It also explores the automation and intelligent technology in the process of man-made board processing, which provides a valuable reference for the research in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
su发布了新的文献求助10
1秒前
湘玉给你溜肥肠完成签到,获得积分10
2秒前
嘤嘤嘤完成签到,获得积分10
3秒前
露露子应助你快睡吧采纳,获得10
3秒前
执着翠芙发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
6秒前
嘤嘤嘤发布了新的文献求助20
6秒前
呐殇完成签到,获得积分10
7秒前
1202发布了新的文献求助10
7秒前
呐殇发布了新的文献求助10
10秒前
NexusExplorer应助欢喜依霜采纳,获得10
10秒前
11秒前
奋斗发布了新的文献求助10
11秒前
胡图图完成签到,获得积分10
11秒前
叶颤完成签到,获得积分10
11秒前
清爽老九发布了新的文献求助30
12秒前
12秒前
13秒前
坦率灵槐完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
Mr.Ren完成签到,获得积分10
16秒前
17秒前
skskysky完成签到 ,获得积分10
18秒前
隐形曼青应助梁子奥里给采纳,获得10
20秒前
希望天下0贩的0应助小奇采纳,获得10
22秒前
快乐煜祺发布了新的文献求助10
22秒前
大个应助RC_Wang采纳,获得10
22秒前
李健的小迷弟应助guoguo82采纳,获得10
23秒前
WANG发布了新的文献求助10
23秒前
淡然向南发布了新的文献求助10
23秒前
wch666完成签到,获得积分10
24秒前
24秒前
激动的雅琴完成签到,获得积分10
25秒前
25秒前
26秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433975
求助须知:如何正确求助?哪些是违规求助? 3031178
关于积分的说明 8941204
捐赠科研通 2719199
什么是DOI,文献DOI怎么找? 1491676
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523