Predictive and experimental analysis of forces in die-less forming using artificial intelligence techniques

模具(集成电路) 人工智能 计算机科学 工程类 机械工程
作者
Ajay Kumar,Virendra Kumar Shrivastava,Parveen Kumar,Ashwini Kumar,Vishal Gulati
标识
DOI:10.1177/09544089241235473
摘要

The use of a novel technology for producing the components of lightweight materials and to reduce the requirements of power utilized during manufacturing processes can be a great aspect to decrease pollution and save resources. Single point incremental forming (SPIF) is the viable and novel approach for manufacturing the parts of high strength and lightweight materials without involving dedicated tools and dies economically. This die-less forming technique outperforms the conventional forming techniques by saving the energy and materials. In this work, the estimation and investigation of forming forces have been accomplished to ensure the secure uses for the SPIF machines for performing this process for the designed conditions on AA2024 sheets which is a lightweight aluminum alloy being widely used in aerospace and automotive sectors. To predict the peak deforming load, machine learning (ML) techniques are employed in the current work along with the artificial neural network (ANN) by taking experimental results as the input dataset. The proposed ML model revealed better accuracy (99%) than previous work performed using similar approaches. The proposed ANN model produced lower mean absolute percentage error 4.35 as compared to other models. Authors also calculated the computing time taken during estimation of forming force. Combination of the Flatend-R1 tool and the 1.6 mm blank thickness increased the deforming loads drastically and can become the limiting factor for forming machine which should be avoided whereas the combination of hemispherical tool and lower blank thickness (0.5 mm) reduced the deforming loads that are needed to manufacture the conical frustum. It was also noticed that as the tool shape was changed from hemispherical-end to Flatend-R1, the axial peak forces were increased by 13.16%, 16.59%, 20.43%, and 22.78% for the levels 1, 2, 3, and 4 of the blank thickness, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hbgcld发布了新的文献求助10
5秒前
可爱奇异果完成签到 ,获得积分10
5秒前
7秒前
forgive完成签到,获得积分10
11秒前
查查完成签到,获得积分10
11秒前
歪比八不发布了新的文献求助10
12秒前
nmamtf发布了新的文献求助10
12秒前
打打应助荒谬采纳,获得10
12秒前
13秒前
小高宽度发布了新的文献求助10
14秒前
14秒前
小二郎应助查查采纳,获得10
15秒前
天天快乐应助XM1008采纳,获得10
15秒前
斯文败类应助hbgcld采纳,获得10
16秒前
丘比特应助轻松戎采纳,获得10
18秒前
努力搞科研完成签到,获得积分10
18秒前
z19发布了新的文献求助10
19秒前
19秒前
歪比八不完成签到,获得积分20
19秒前
20秒前
草莓味的AD钙完成签到,获得积分10
21秒前
单纯寒凝完成签到,获得积分10
22秒前
ouyang发布了新的文献求助10
22秒前
长颈鹿完成签到 ,获得积分10
24秒前
干亿先完成签到,获得积分10
24秒前
25秒前
orixero应助赖道之采纳,获得30
25秒前
26秒前
彩色路人完成签到,获得积分10
26秒前
29秒前
forgive关注了科研通微信公众号
32秒前
evan发布了新的文献求助10
32秒前
慕青应助小鱼儿采纳,获得10
32秒前
XM1008发布了新的文献求助10
33秒前
勤劳晓亦应助含蓄的采白采纳,获得30
33秒前
33秒前
34秒前
34秒前
wyg1994发布了新的文献求助10
39秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349431
求助须知:如何正确求助?哪些是违规求助? 2975524
关于积分的说明 8669583
捐赠科研通 2656310
什么是DOI,文献DOI怎么找? 1454531
科研通“疑难数据库(出版商)”最低求助积分说明 673370
邀请新用户注册赠送积分活动 663821