Development of Two Robust Data-Driven Models Using Machine Learning and Artificial Neural Network Methods to Predict Wells Fluid Rate in a Challenging Offshore Brown Field

人工神经网络 海底管道 领域(数学) 计算机科学 人工智能 机器学习 地质学 岩土工程 数学 纯数学
作者
Mohamed El-Hussein El-Dessouky,Ali Darwish,I. I. Mohamed,Tamer Hosny Abdelhalem,A. K. Khalil
标识
DOI:10.2523/iptc-23669-ms
摘要

Abstract Two robust data driven models based on machine learning (ML) and artificial neural network (ANN) methods were introduced to overcome the shortcomings of physical and virtual well testing in Gulf of Suez offshore fields. The aim of these new models is to use the existing data and create a precise/easily accessible tool that fill the gap in well monitoring and testing system to predict wells fluid rate, improve field optimization and properly allocate oil production. A comprehensive methodology was applied to build/verify a robust virtual model as following: 1) Analyzing General Energy Equation to select the relevant inputs, 2) Data Collection, 3) Exploratory Data Analysis (EDA), 4) Feature Engineering, 5) Machine Learning Model Selection, 6) Hyper-parameters Fine Tuning, 7) Developing Artificial Neural Network model, 8) Models Deployment. Exploratory Data Analysis (EDA) and the General Energy Equation were used to select ten main parameters affecting the model’s accuracy. The selected features include wellhead pressure, wellhead temperature, reservoir temperature, reservoir pressure, water gravity, difference between reservoir and bubble point pressure, watercut percent, injection gas, downstream pressure, and tubing type. Different machine learning models based on linear, support vector machine, decision trees and gradient boosting methods were programmed. The results of these models were compared based on coefficient of determination (R2 score), root mean square error (rmse), mean absolute error (mae), and mean absolute percentage error (mape). XGboost regressor was selected as the best model, then the model hyper parameters were fine-tuned using grid search method. The final model results of test dataset showed R2 score, rmse, mae and mape of 0.9674, 323, 227 and 13.1% respectively. Furthermore, ANN was created and fine-tuned to select the model architecture. The model was evaluated using the same train and test data where the model showed comparable results to the best ML models. The results of ANN model showed R2 score, rmse, mae and mape of 0.9603, 357, 241 and 13.7%. respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
suk完成签到,获得积分10
5秒前
lifeline发布了新的文献求助30
5秒前
5秒前
aaa发布了新的文献求助20
8秒前
13秒前
sansan完成签到 ,获得积分10
16秒前
wanci应助义气碧菡采纳,获得10
17秒前
星空完成签到 ,获得积分10
17秒前
17秒前
19秒前
19秒前
华仔应助小鱼采纳,获得10
21秒前
22秒前
22秒前
24秒前
25秒前
25秒前
zxy完成签到,获得积分10
25秒前
27秒前
gwen发布了新的文献求助10
27秒前
29秒前
29秒前
中和皇极发布了新的文献求助10
29秒前
义气碧菡发布了新的文献求助10
30秒前
30秒前
cocolu应助谭yuanjun采纳,获得30
31秒前
31秒前
31秒前
周周发布了新的文献求助10
32秒前
feilu发布了新的文献求助10
33秒前
睢先生完成签到,获得积分10
34秒前
34秒前
洋洋发布了新的文献求助10
35秒前
义气碧菡完成签到,获得积分10
36秒前
Zhouzhou完成签到 ,获得积分10
37秒前
37秒前
小鱼发布了新的文献求助10
38秒前
39秒前
40秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624