Development of Two Robust Data-Driven Models Using Machine Learning and Artificial Neural Network Methods to Predict Wells Fluid Rate in a Challenging Offshore Brown Field

人工神经网络 海底管道 领域(数学) 计算机科学 人工智能 机器学习 地质学 岩土工程 数学 纯数学
作者
Mohamed El-Hussein El-Dessouky,Ali Darwish,I. I. Mohamed,Tamer Hosny Abdelhalem,A. K. Khalil
标识
DOI:10.2523/iptc-23669-ms
摘要

Abstract Two robust data driven models based on machine learning (ML) and artificial neural network (ANN) methods were introduced to overcome the shortcomings of physical and virtual well testing in Gulf of Suez offshore fields. The aim of these new models is to use the existing data and create a precise/easily accessible tool that fill the gap in well monitoring and testing system to predict wells fluid rate, improve field optimization and properly allocate oil production. A comprehensive methodology was applied to build/verify a robust virtual model as following: 1) Analyzing General Energy Equation to select the relevant inputs, 2) Data Collection, 3) Exploratory Data Analysis (EDA), 4) Feature Engineering, 5) Machine Learning Model Selection, 6) Hyper-parameters Fine Tuning, 7) Developing Artificial Neural Network model, 8) Models Deployment. Exploratory Data Analysis (EDA) and the General Energy Equation were used to select ten main parameters affecting the model’s accuracy. The selected features include wellhead pressure, wellhead temperature, reservoir temperature, reservoir pressure, water gravity, difference between reservoir and bubble point pressure, watercut percent, injection gas, downstream pressure, and tubing type. Different machine learning models based on linear, support vector machine, decision trees and gradient boosting methods were programmed. The results of these models were compared based on coefficient of determination (R2 score), root mean square error (rmse), mean absolute error (mae), and mean absolute percentage error (mape). XGboost regressor was selected as the best model, then the model hyper parameters were fine-tuned using grid search method. The final model results of test dataset showed R2 score, rmse, mae and mape of 0.9674, 323, 227 and 13.1% respectively. Furthermore, ANN was created and fine-tuned to select the model architecture. The model was evaluated using the same train and test data where the model showed comparable results to the best ML models. The results of ANN model showed R2 score, rmse, mae and mape of 0.9603, 357, 241 and 13.7%. respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可以完成签到,获得积分10
刚刚
1秒前
坚强枫完成签到,获得积分10
2秒前
默默的巧荷完成签到,获得积分10
3秒前
一叶知秋完成签到,获得积分10
4秒前
小杰瑞完成签到,获得积分20
4秒前
希望天下0贩的0应助可以采纳,获得10
4秒前
白色梨花发布了新的文献求助10
4秒前
5秒前
包容柜子发布了新的文献求助10
5秒前
fiell完成签到,获得积分10
6秒前
眼睛大的擎苍给眼睛大的擎苍的求助进行了留言
6秒前
呆萌滑板完成签到 ,获得积分10
7秒前
7秒前
瑶瑶完成签到,获得积分10
8秒前
小猪找库里完成签到,获得积分10
9秒前
zhuzhen007完成签到 ,获得积分10
10秒前
淡定的秀发完成签到,获得积分10
10秒前
xuan完成签到,获得积分10
12秒前
龙华之士发布了新的文献求助10
12秒前
mkb发布了新的文献求助10
12秒前
sl发布了新的文献求助10
13秒前
隐形尔蝶发布了新的文献求助10
14秒前
15秒前
15秒前
仙林AK47完成签到,获得积分10
15秒前
无花果应助包容柜子采纳,获得10
15秒前
chen完成签到,获得积分10
16秒前
iNk应助河丫采纳,获得20
18秒前
小马甲应助清浅采纳,获得10
19秒前
清爽笑翠完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
23秒前
早岁完成签到,获得积分10
23秒前
mkb关闭了mkb文献求助
23秒前
隐形尔蝶完成签到,获得积分10
24秒前
自由老头发布了新的文献求助100
27秒前
monair完成签到 ,获得积分10
27秒前
lzhgoashore发布了新的文献求助10
28秒前
一朵小鲜花儿完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048