Development of Two Robust Data-Driven Models Using Machine Learning and Artificial Neural Network Methods to Predict Wells Fluid Rate in a Challenging Offshore Brown Field

人工神经网络 海底管道 领域(数学) 计算机科学 人工智能 机器学习 地质学 岩土工程 数学 纯数学
作者
Mohamed El-Hussein El-Dessouky,Ali Darwish,I. I. Mohamed,Tamer Hosny Abdelhalem,A. K. Khalil
标识
DOI:10.2523/iptc-23669-ms
摘要

Abstract Two robust data driven models based on machine learning (ML) and artificial neural network (ANN) methods were introduced to overcome the shortcomings of physical and virtual well testing in Gulf of Suez offshore fields. The aim of these new models is to use the existing data and create a precise/easily accessible tool that fill the gap in well monitoring and testing system to predict wells fluid rate, improve field optimization and properly allocate oil production. A comprehensive methodology was applied to build/verify a robust virtual model as following: 1) Analyzing General Energy Equation to select the relevant inputs, 2) Data Collection, 3) Exploratory Data Analysis (EDA), 4) Feature Engineering, 5) Machine Learning Model Selection, 6) Hyper-parameters Fine Tuning, 7) Developing Artificial Neural Network model, 8) Models Deployment. Exploratory Data Analysis (EDA) and the General Energy Equation were used to select ten main parameters affecting the model’s accuracy. The selected features include wellhead pressure, wellhead temperature, reservoir temperature, reservoir pressure, water gravity, difference between reservoir and bubble point pressure, watercut percent, injection gas, downstream pressure, and tubing type. Different machine learning models based on linear, support vector machine, decision trees and gradient boosting methods were programmed. The results of these models were compared based on coefficient of determination (R2 score), root mean square error (rmse), mean absolute error (mae), and mean absolute percentage error (mape). XGboost regressor was selected as the best model, then the model hyper parameters were fine-tuned using grid search method. The final model results of test dataset showed R2 score, rmse, mae and mape of 0.9674, 323, 227 and 13.1% respectively. Furthermore, ANN was created and fine-tuned to select the model architecture. The model was evaluated using the same train and test data where the model showed comparable results to the best ML models. The results of ANN model showed R2 score, rmse, mae and mape of 0.9603, 357, 241 and 13.7%. respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
屋子完成签到,获得积分10
刚刚
科研通AI5应助Skyyeats采纳,获得10
刚刚
1秒前
刻苦的幻巧完成签到,获得积分10
2秒前
2秒前
殷勤的天亦完成签到,获得积分20
2秒前
阿米不吃菠菜完成签到,获得积分10
2秒前
Szj发布了新的文献求助30
2秒前
举人烧烤发布了新的文献求助10
3秒前
彭于晏应助酥咸采纳,获得10
3秒前
一个正经人完成签到,获得积分10
3秒前
积极问晴发布了新的文献求助10
4秒前
竹园发布了新的文献求助10
4秒前
势不可挡发布了新的文献求助10
4秒前
爆米花应助waoller1采纳,获得10
4秒前
干净笑柳完成签到,获得积分10
4秒前
4秒前
5秒前
海天一线发布了新的文献求助30
5秒前
外向烤鸡发布了新的文献求助10
5秒前
Hongyu完成签到 ,获得积分10
5秒前
131949完成签到,获得积分20
6秒前
Sunsets完成签到 ,获得积分10
6秒前
励志小薛发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
ChaseY发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
pian完成签到,获得积分10
8秒前
科研通AI5应助betsy采纳,获得10
9秒前
angel完成签到,获得积分10
9秒前
necos发布了新的文献求助10
10秒前
图灵桑发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Szj完成签到,获得积分10
11秒前
castro完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615886
求助须知:如何正确求助?哪些是违规求助? 4019358
关于积分的说明 12442023
捐赠科研通 3702534
什么是DOI,文献DOI怎么找? 2041597
邀请新用户注册赠送积分活动 1074258
科研通“疑难数据库(出版商)”最低求助积分说明 957889