亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of Two Robust Data-Driven Models Using Machine Learning and Artificial Neural Network Methods to Predict Wells Fluid Rate in a Challenging Offshore Brown Field

人工神经网络 海底管道 领域(数学) 计算机科学 人工智能 机器学习 地质学 岩土工程 数学 纯数学
作者
Mohamed El-Hussein El-Dessouky,Ali Darwish,I. I. Mohamed,Tamer Hosny Abdelhalem,A. K. Khalil
标识
DOI:10.2523/iptc-23669-ms
摘要

Abstract Two robust data driven models based on machine learning (ML) and artificial neural network (ANN) methods were introduced to overcome the shortcomings of physical and virtual well testing in Gulf of Suez offshore fields. The aim of these new models is to use the existing data and create a precise/easily accessible tool that fill the gap in well monitoring and testing system to predict wells fluid rate, improve field optimization and properly allocate oil production. A comprehensive methodology was applied to build/verify a robust virtual model as following: 1) Analyzing General Energy Equation to select the relevant inputs, 2) Data Collection, 3) Exploratory Data Analysis (EDA), 4) Feature Engineering, 5) Machine Learning Model Selection, 6) Hyper-parameters Fine Tuning, 7) Developing Artificial Neural Network model, 8) Models Deployment. Exploratory Data Analysis (EDA) and the General Energy Equation were used to select ten main parameters affecting the model’s accuracy. The selected features include wellhead pressure, wellhead temperature, reservoir temperature, reservoir pressure, water gravity, difference between reservoir and bubble point pressure, watercut percent, injection gas, downstream pressure, and tubing type. Different machine learning models based on linear, support vector machine, decision trees and gradient boosting methods were programmed. The results of these models were compared based on coefficient of determination (R2 score), root mean square error (rmse), mean absolute error (mae), and mean absolute percentage error (mape). XGboost regressor was selected as the best model, then the model hyper parameters were fine-tuned using grid search method. The final model results of test dataset showed R2 score, rmse, mae and mape of 0.9674, 323, 227 and 13.1% respectively. Furthermore, ANN was created and fine-tuned to select the model architecture. The model was evaluated using the same train and test data where the model showed comparable results to the best ML models. The results of ANN model showed R2 score, rmse, mae and mape of 0.9603, 357, 241 and 13.7%. respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种下梧桐树完成签到 ,获得积分10
35秒前
小橘子吃傻子完成签到,获得积分10
42秒前
科研通AI2S应助倪妮采纳,获得10
1分钟前
传奇3应助倪妮采纳,获得50
1分钟前
昏睡的丸子完成签到,获得积分10
1分钟前
1分钟前
orixero应助盼盼采纳,获得10
1分钟前
1分钟前
HMYX完成签到 ,获得积分10
2分钟前
2分钟前
qft发布了新的文献求助10
2分钟前
2分钟前
倪妮发布了新的文献求助50
2分钟前
Ava应助不安的靖柔采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
ymr发布了新的文献求助10
2分钟前
ymr发布了新的文献求助10
2分钟前
ymr发布了新的文献求助10
2分钟前
起风了完成签到 ,获得积分10
2分钟前
ymr发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
SciGPT应助糖糖的冰镇啤酒采纳,获得10
3分钟前
不安的靖柔完成签到,获得积分10
3分钟前
lzd发布了新的文献求助10
3分钟前
Jasper应助yeyeye采纳,获得10
3分钟前
3分钟前
柒柒发布了新的文献求助30
3分钟前
lzd完成签到,获得积分10
3分钟前
3分钟前
轻松的采柳完成签到 ,获得积分10
3分钟前
虚拟的清炎完成签到 ,获得积分10
3分钟前
yeyeye发布了新的文献求助10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104795
求助须知:如何正确求助?哪些是违规求助? 4314873
关于积分的说明 13443807
捐赠科研通 4143302
什么是DOI,文献DOI怎么找? 2270281
邀请新用户注册赠送积分活动 1272797
关于科研通互助平台的介绍 1209743