Development of Two Robust Data-Driven Models Using Machine Learning and Artificial Neural Network Methods to Predict Wells Fluid Rate in a Challenging Offshore Brown Field

人工神经网络 海底管道 领域(数学) 计算机科学 人工智能 机器学习 地质学 岩土工程 数学 纯数学
作者
Mohamed El-Hussein El-Dessouky,Ali Darwish,I. I. Mohamed,Tamer Hosny Abdelhalem,A. K. Khalil
标识
DOI:10.2523/iptc-23669-ms
摘要

Abstract Two robust data driven models based on machine learning (ML) and artificial neural network (ANN) methods were introduced to overcome the shortcomings of physical and virtual well testing in Gulf of Suez offshore fields. The aim of these new models is to use the existing data and create a precise/easily accessible tool that fill the gap in well monitoring and testing system to predict wells fluid rate, improve field optimization and properly allocate oil production. A comprehensive methodology was applied to build/verify a robust virtual model as following: 1) Analyzing General Energy Equation to select the relevant inputs, 2) Data Collection, 3) Exploratory Data Analysis (EDA), 4) Feature Engineering, 5) Machine Learning Model Selection, 6) Hyper-parameters Fine Tuning, 7) Developing Artificial Neural Network model, 8) Models Deployment. Exploratory Data Analysis (EDA) and the General Energy Equation were used to select ten main parameters affecting the model’s accuracy. The selected features include wellhead pressure, wellhead temperature, reservoir temperature, reservoir pressure, water gravity, difference between reservoir and bubble point pressure, watercut percent, injection gas, downstream pressure, and tubing type. Different machine learning models based on linear, support vector machine, decision trees and gradient boosting methods were programmed. The results of these models were compared based on coefficient of determination (R2 score), root mean square error (rmse), mean absolute error (mae), and mean absolute percentage error (mape). XGboost regressor was selected as the best model, then the model hyper parameters were fine-tuned using grid search method. The final model results of test dataset showed R2 score, rmse, mae and mape of 0.9674, 323, 227 and 13.1% respectively. Furthermore, ANN was created and fine-tuned to select the model architecture. The model was evaluated using the same train and test data where the model showed comparable results to the best ML models. The results of ANN model showed R2 score, rmse, mae and mape of 0.9603, 357, 241 and 13.7%. respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaoty完成签到,获得积分10
刚刚
刚刚
Zhou完成签到,获得积分10
1秒前
华仔应助合适的新竹采纳,获得10
1秒前
wz发布了新的文献求助10
1秒前
fkhuny发布了新的文献求助10
1秒前
1秒前
2秒前
小雨发布了新的文献求助10
2秒前
2秒前
可爱邓邓给可爱邓邓的求助进行了留言
3秒前
简单十三完成签到,获得积分10
3秒前
4秒前
4秒前
tidongzhiwu发布了新的文献求助10
5秒前
kiki完成签到 ,获得积分10
5秒前
5秒前
CucRuotThua完成签到,获得积分10
5秒前
vogo7发布了新的文献求助10
6秒前
桐桐应助积极的可云采纳,获得10
6秒前
独特觅儿完成签到,获得积分10
6秒前
xhf发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
satisusu完成签到 ,获得积分10
8秒前
友好傲白发布了新的文献求助30
8秒前
乐乐应助起床了吗采纳,获得10
8秒前
whisper发布了新的文献求助10
10秒前
zhanzhanzhan完成签到,获得积分10
10秒前
小雨完成签到,获得积分10
10秒前
传奇3应助郭翔采纳,获得10
11秒前
CodeCraft应助zjy采纳,获得10
11秒前
捏个小雪团完成签到 ,获得积分10
11秒前
11秒前
外向菲鹰完成签到,获得积分10
11秒前
11秒前
wuwei完成签到,获得积分10
11秒前
11秒前
松子儿hhh发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406