A noise-resistant graph neural network by semi-supervised contrastive learning

计算机科学 人工神经网络 图形 人工智能 监督学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Zhengyu Lu,Junbo Ma,Zongqian Wu,Bo Zhou,Xiaofeng Zhu
出处
期刊:Information Sciences [Elsevier]
卷期号:658: 120001-120001 被引量:5
标识
DOI:10.1016/j.ins.2023.120001
摘要

Graph neural networks (GNNs) have been widely applied for representation learning on the graph data in real applications, but few of them are designed to conduct representation learning on the graph data with noisy labels. Its key challenge is that the feature embeddings of nodes with noisy labels (noisy nodes for short) are close to those of unlabeled nodes so that the classifier constructed by GNNs is influenced by noisy nodes. To address this issue, in this paper, we propose a noise-resistant graph neural network with semi-supervised contrastive learning to push noisy nodes far away from unlabeled nodes in the embedding space. To do this, we design a constraint of semi-supervised contrastive learning and put it into the objective function of GNNs. Specifically, the proposed constraint enlarges the distance between noisy nodes and unlabeled nodes by pushing noisy nodes far away from their unlabeled neighbors in the embedding space. As a result, the embeddings of unlabeled nodes are influenced by noisy label less. Moreover, we intuitively analyze the feasibility of our proposed constraint. Comprehensive experiments on real datasets further verify the effectiveness of our proposed method over previous SOTA methods in terms of classification tasks with different ratio levels of noisy labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
小鱼鱼Fish应助67n采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
科研通AI6.1应助英俊安蕾采纳,获得10
1秒前
1秒前
2秒前
tangyi888完成签到,获得积分10
2秒前
2秒前
111发布了新的文献求助10
3秒前
3秒前
不劳而获完成签到 ,获得积分10
3秒前
3秒前
董方圆完成签到,获得积分10
3秒前
怡然缘分发布了新的文献求助30
4秒前
5秒前
BowieHuang应助xx采纳,获得10
5秒前
量子星尘发布了新的文献求助30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760818
求助须知:如何正确求助?哪些是违规求助? 5526191
关于积分的说明 15398334
捐赠科研通 4897505
什么是DOI,文献DOI怎么找? 2634199
邀请新用户注册赠送积分活动 1582335
关于科研通互助平台的介绍 1537676