A noise-resistant graph neural network by semi-supervised contrastive learning

计算机科学 人工神经网络 图形 人工智能 监督学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Zhengyu Lu,Junbo Ma,Zongqian Wu,Bo Zhou,Xiaofeng Zhu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:658: 120001-120001 被引量:5
标识
DOI:10.1016/j.ins.2023.120001
摘要

Graph neural networks (GNNs) have been widely applied for representation learning on the graph data in real applications, but few of them are designed to conduct representation learning on the graph data with noisy labels. Its key challenge is that the feature embeddings of nodes with noisy labels (noisy nodes for short) are close to those of unlabeled nodes so that the classifier constructed by GNNs is influenced by noisy nodes. To address this issue, in this paper, we propose a noise-resistant graph neural network with semi-supervised contrastive learning to push noisy nodes far away from unlabeled nodes in the embedding space. To do this, we design a constraint of semi-supervised contrastive learning and put it into the objective function of GNNs. Specifically, the proposed constraint enlarges the distance between noisy nodes and unlabeled nodes by pushing noisy nodes far away from their unlabeled neighbors in the embedding space. As a result, the embeddings of unlabeled nodes are influenced by noisy label less. Moreover, we intuitively analyze the feasibility of our proposed constraint. Comprehensive experiments on real datasets further verify the effectiveness of our proposed method over previous SOTA methods in terms of classification tasks with different ratio levels of noisy labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后海亦应助科研通管家采纳,获得20
刚刚
Owen应助科研通管家采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
flymove发布了新的文献求助10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
刚刚
马仔酷酷地完成签到,获得积分10
刚刚
meng17应助科研通管家采纳,获得10
刚刚
meng17应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
安桥应助科研通管家采纳,获得20
1秒前
背后海亦应助科研通管家采纳,获得20
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
深情安青应助典雅的俊驰采纳,获得10
1秒前
lara应助小杨爱学习采纳,获得30
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
神勇代荷完成签到,获得积分10
2秒前
巴拉巴拉发布了新的文献求助10
3秒前
Wl0115完成签到,获得积分10
3秒前
3秒前
cyj发布了新的文献求助10
4秒前
pcwang完成签到,获得积分10
4秒前
St雪完成签到,获得积分10
4秒前
娜笔小熊发布了新的文献求助20
4秒前
泡芙发布了新的文献求助10
4秒前
Pony完成签到,获得积分10
4秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149