GAM-MDR: probing miRNA–drug resistance using a graph autoencoder based on random path masking

生物 自编码 遮罩(插图) 计算生物学 路径(计算) 小RNA 图形 机器学习 遗传学 生物信息学 深度学习 人工智能 基因 理论计算机科学 计算机科学 艺术 视觉艺术 程序设计语言
作者
Zhecheng Zhou,Zhenya Du,Xin Jiang,Linlin Zhuo,Yixin Xu,Xiangzheng Fu,Mingzhe Liu,Quan Zou
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:23 (4): 475-483 被引量:12
标识
DOI:10.1093/bfgp/elae005
摘要

Abstract MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA–drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA–drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
gfbh完成签到,获得积分10
刚刚
lm发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助CXY采纳,获得10
1秒前
haishanhu完成签到 ,获得积分10
2秒前
蛰伏发布了新的文献求助10
2秒前
发AFM发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
wubo完成签到,获得积分10
3秒前
张hy完成签到,获得积分10
3秒前
共享精神应助shinn采纳,获得10
3秒前
wei发布了新的文献求助10
3秒前
HHHHJ发布了新的文献求助10
3秒前
4秒前
5秒前
京京京发布了新的文献求助10
6秒前
FashionBoy应助机灵的静枫采纳,获得10
6秒前
肖旻发布了新的文献求助10
6秒前
完美世界应助enen采纳,获得10
7秒前
YuhaoYan完成签到 ,获得积分10
8秒前
马耳东风发布了新的文献求助10
8秒前
小火车完成签到,获得积分10
9秒前
小药丸完成签到 ,获得积分10
9秒前
9秒前
星辰大海应助Chris采纳,获得30
9秒前
充电宝应助自觉的涵易采纳,获得10
10秒前
英俊的铭应助tejing1158采纳,获得10
11秒前
12秒前
12秒前
12秒前
搜集达人应助张hy采纳,获得10
13秒前
Deng完成签到,获得积分10
13秒前
13秒前
14秒前
直率的菠萝完成签到 ,获得积分10
14秒前
心灵美水蜜桃应助gsdrv采纳,获得10
14秒前
14秒前
卷卷完成签到,获得积分10
15秒前
杨家辉发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784354
求助须知:如何正确求助?哪些是违规求助? 5682151
关于积分的说明 15463941
捐赠科研通 4913559
什么是DOI,文献DOI怎么找? 2644745
邀请新用户注册赠送积分活动 1592607
关于科研通互助平台的介绍 1547134