GAM-MDR: probing miRNA–drug resistance using a graph autoencoder based on random path masking

生物 自编码 遮罩(插图) 计算生物学 路径(计算) 小RNA 图形 机器学习 遗传学 生物信息学 深度学习 人工智能 基因 理论计算机科学 计算机科学 程序设计语言 艺术 视觉艺术
作者
Zhecheng Zhou,Zhenya Du,Xin Jiang,Linlin Zhuo,Yixin Xu,Xiangzheng Fu,Mingzhe Liu,Quan Zou
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:23 (4): 475-483 被引量:11
标识
DOI:10.1093/bfgp/elae005
摘要

Abstract MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA–drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA–drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助123采纳,获得10
1秒前
maybe完成签到,获得积分10
2秒前
彭于彦祖应助ganchao1776采纳,获得30
3秒前
美好送终完成签到,获得积分10
5秒前
5秒前
克泷发布了新的文献求助10
6秒前
6秒前
6秒前
我是老大应助喜悦莛采纳,获得10
7秒前
爱静静应助ok采纳,获得10
7秒前
在水一方应助hyper3than采纳,获得10
7秒前
mbf发布了新的文献求助10
7秒前
8秒前
8秒前
陈爱佳发布了新的文献求助10
9秒前
carrotleah完成签到,获得积分10
10秒前
skevvecl完成签到,获得积分10
11秒前
lubing完成签到,获得积分20
12秒前
科研小白发布了新的文献求助10
12秒前
曾经电源完成签到,获得积分10
12秒前
酷波er应助勤奋以蓝采纳,获得10
13秒前
小布完成签到 ,获得积分10
13秒前
13秒前
cmc发布了新的文献求助20
13秒前
大模型应助李铮采纳,获得10
13秒前
英姑应助hu采纳,获得10
13秒前
小马甲应助精灵少女采纳,获得10
13秒前
研友rainbow完成签到,获得积分10
14秒前
14秒前
14秒前
阿元完成签到,获得积分10
14秒前
Ls完成签到 ,获得积分10
14秒前
orixero应助輝23采纳,获得10
15秒前
hl268发布了新的文献求助10
15秒前
16秒前
爆米花应助toxin采纳,获得10
16秒前
明天想自律完成签到,获得积分10
16秒前
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152244
求助须知:如何正确求助?哪些是违规求助? 2803512
关于积分的说明 7854215
捐赠科研通 2461077
什么是DOI,文献DOI怎么找? 1310159
科研通“疑难数据库(出版商)”最低求助积分说明 629126
版权声明 601765