Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction

能源消耗 高效能源利用 深度学习 能量(信号处理) 计算机科学 消费(社会学) 人工智能 物联网 环境科学 工艺工程 机器学习 工程类 嵌入式系统 电气工程 物理 社会科学 量子力学 社会学
作者
N. Yuvaraj,K. R. Sri Preethaa,Girish Wadhwa,Yeon Su Choi,Zengshun Chen,Dong‐Eun Lee,Yirong Mi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (5): 1925-1925 被引量:3
标识
DOI:10.3390/su16051925
摘要

Buildings remain pivotal in global energy consumption, necessitating a focused approach toward enhancing their energy efficiency to alleviate environmental impacts. Precise energy prediction stands as a linchpin in optimizing efficiency, offering indispensable foresight into future energy demands critical for sustainable environments. However, accurately forecasting energy consumption for individual households and commercial buildings presents multifaceted challenges due to their diverse consumption patterns. Leveraging the emerging landscape of the Internet of Things (IoT) in smart homes, coupled with AI-driven energy solutions, presents promising avenues for overcoming these challenges. This study introduces a pioneering approach that harnesses a hybrid deep learning model for energy consumption prediction, strategically amalgamating convolutional neural networks’ features with long short-term memory (LSTM) units. The model harnesses the granularity of IoT-enabled smart meter data, enabling precise energy consumption forecasts in both residential and commercial spaces. In a comparative analysis against established deep learning models, the proposed hybrid model consistently demonstrates superior performance, notably exceling in accurately predicting weekly average energy usage. The study’s innovation lies in its novel model architecture, showcasing an unprecedented capability to forecast energy consumption patterns. This capability holds significant promise in guiding tailored energy management strategies, thereby fostering optimized energy consumption practices in buildings. The demonstrated superiority of the hybrid model underscores its potential to serve as a cornerstone in driving sustainable energy utilization, offering invaluable guidance for a more energy-efficient future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心思雁完成签到,获得积分10
1秒前
Double_N完成签到,获得积分10
4秒前
冰姗完成签到,获得积分10
6秒前
8秒前
Iris完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
victory_liu完成签到,获得积分10
11秒前
Swait完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
21秒前
左白易发布了新的文献求助20
22秒前
24秒前
量子星尘发布了新的文献求助10
27秒前
Eugenia完成签到,获得积分10
27秒前
wangwangxiao完成签到 ,获得积分10
31秒前
31秒前
上官完成签到 ,获得积分10
35秒前
含光完成签到,获得积分10
35秒前
38秒前
量子星尘发布了新的文献求助10
38秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
39秒前
39秒前
zenabia完成签到 ,获得积分10
41秒前
44秒前
Tangyartie完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
45秒前
忧心的藏鸟完成签到 ,获得积分10
49秒前
欣喜的涵柏完成签到 ,获得积分10
50秒前
51秒前
53秒前
小石头完成签到 ,获得积分10
53秒前
谨慎翎完成签到 ,获得积分10
55秒前
ymr完成签到 ,获得积分10
57秒前
57秒前
Mason完成签到,获得积分10
57秒前
Mint完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
luffy完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764955
求助须知:如何正确求助?哪些是违规求助? 5557008
关于积分的说明 15406819
捐赠科研通 4899862
什么是DOI,文献DOI怎么找? 2636048
邀请新用户注册赠送积分活动 1584235
关于科研通互助平台的介绍 1539555