Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction

能源消耗 高效能源利用 深度学习 能量(信号处理) 计算机科学 消费(社会学) 人工智能 物联网 环境科学 工艺工程 机器学习 工程类 嵌入式系统 电气工程 物理 社会科学 量子力学 社会学
作者
N. Yuvaraj,K. R. Sri Preethaa,Girish Wadhwa,Yeon Su Choi,Zengshun Chen,Dong‐Eun Lee,Yirong Mi
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (5): 1925-1925 被引量:3
标识
DOI:10.3390/su16051925
摘要

Buildings remain pivotal in global energy consumption, necessitating a focused approach toward enhancing their energy efficiency to alleviate environmental impacts. Precise energy prediction stands as a linchpin in optimizing efficiency, offering indispensable foresight into future energy demands critical for sustainable environments. However, accurately forecasting energy consumption for individual households and commercial buildings presents multifaceted challenges due to their diverse consumption patterns. Leveraging the emerging landscape of the Internet of Things (IoT) in smart homes, coupled with AI-driven energy solutions, presents promising avenues for overcoming these challenges. This study introduces a pioneering approach that harnesses a hybrid deep learning model for energy consumption prediction, strategically amalgamating convolutional neural networks’ features with long short-term memory (LSTM) units. The model harnesses the granularity of IoT-enabled smart meter data, enabling precise energy consumption forecasts in both residential and commercial spaces. In a comparative analysis against established deep learning models, the proposed hybrid model consistently demonstrates superior performance, notably exceling in accurately predicting weekly average energy usage. The study’s innovation lies in its novel model architecture, showcasing an unprecedented capability to forecast energy consumption patterns. This capability holds significant promise in guiding tailored energy management strategies, thereby fostering optimized energy consumption practices in buildings. The demonstrated superiority of the hybrid model underscores its potential to serve as a cornerstone in driving sustainable energy utilization, offering invaluable guidance for a more energy-efficient future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助1renebaebae采纳,获得10
1秒前
1秒前
3秒前
兮尔完成签到,获得积分10
3秒前
3秒前
yxl01yxl完成签到,获得积分10
3秒前
在水一方应助A.y.w采纳,获得30
4秒前
4秒前
ekdjk完成签到,获得积分10
4秒前
4秒前
丘比特应助电闪采纳,获得10
5秒前
陆小果完成签到,获得积分10
5秒前
JasperChan发布了新的文献求助30
5秒前
所所应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
yookia应助科研通管家采纳,获得20
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
七月半发布了新的文献求助30
7秒前
烟花应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
LEMONS应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
大神装发布了新的文献求助10
8秒前
9秒前
小蘑菇应助马素娜采纳,获得10
9秒前
yingying完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149