Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction

能源消耗 高效能源利用 深度学习 能量(信号处理) 计算机科学 消费(社会学) 人工智能 物联网 环境科学 工艺工程 机器学习 工程类 嵌入式系统 电气工程 物理 社会学 量子力学 社会科学
作者
N. Yuvaraj,K. R. Sri Preethaa,Girish Wadhwa,Yeon Su Choi,Zengshun Chen,Dong‐Eun Lee,Yirong Mi
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (5): 1925-1925 被引量:3
标识
DOI:10.3390/su16051925
摘要

Buildings remain pivotal in global energy consumption, necessitating a focused approach toward enhancing their energy efficiency to alleviate environmental impacts. Precise energy prediction stands as a linchpin in optimizing efficiency, offering indispensable foresight into future energy demands critical for sustainable environments. However, accurately forecasting energy consumption for individual households and commercial buildings presents multifaceted challenges due to their diverse consumption patterns. Leveraging the emerging landscape of the Internet of Things (IoT) in smart homes, coupled with AI-driven energy solutions, presents promising avenues for overcoming these challenges. This study introduces a pioneering approach that harnesses a hybrid deep learning model for energy consumption prediction, strategically amalgamating convolutional neural networks’ features with long short-term memory (LSTM) units. The model harnesses the granularity of IoT-enabled smart meter data, enabling precise energy consumption forecasts in both residential and commercial spaces. In a comparative analysis against established deep learning models, the proposed hybrid model consistently demonstrates superior performance, notably exceling in accurately predicting weekly average energy usage. The study’s innovation lies in its novel model architecture, showcasing an unprecedented capability to forecast energy consumption patterns. This capability holds significant promise in guiding tailored energy management strategies, thereby fostering optimized energy consumption practices in buildings. The demonstrated superiority of the hybrid model underscores its potential to serve as a cornerstone in driving sustainable energy utilization, offering invaluable guidance for a more energy-efficient future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞便当发布了新的文献求助10
1秒前
科研通AI2S应助Jiang采纳,获得10
2秒前
阿金完成签到 ,获得积分10
2秒前
格格完成签到 ,获得积分10
2秒前
生动路人发布了新的文献求助10
3秒前
flipped完成签到,获得积分10
4秒前
潇洒莞完成签到 ,获得积分10
5秒前
汉堡包应助Jjjj采纳,获得30
5秒前
hhan完成签到,获得积分10
6秒前
6秒前
XXF发布了新的文献求助10
6秒前
一种信仰完成签到 ,获得积分10
6秒前
CUREME完成签到,获得积分10
7秒前
xmyyy完成签到,获得积分10
7秒前
Huanghong完成签到,获得积分10
9秒前
Jeffery426完成签到,获得积分10
10秒前
心潮澎湃完成签到,获得积分10
10秒前
冰释完成签到,获得积分10
11秒前
xmyyy发布了新的文献求助10
12秒前
太清完成签到 ,获得积分10
13秒前
AA完成签到 ,获得积分10
13秒前
XXF完成签到,获得积分10
13秒前
852应助Xiyixuan采纳,获得10
15秒前
MADAO完成签到 ,获得积分10
16秒前
changpeng完成签到,获得积分10
16秒前
jerry完成签到,获得积分10
18秒前
18秒前
yuxiaorou完成签到,获得积分10
19秒前
帆帆帆完成签到 ,获得积分10
20秒前
jade257完成签到,获得积分10
21秒前
changpeng发布了新的文献求助10
22秒前
Skye完成签到,获得积分10
22秒前
22秒前
外向青筠完成签到 ,获得积分10
23秒前
23秒前
ATOM完成签到,获得积分20
25秒前
LegendThree完成签到,获得积分10
25秒前
Dory完成签到 ,获得积分10
25秒前
xiaohe完成签到 ,获得积分10
27秒前
ATOM发布了新的文献求助10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212768
求助须知:如何正确求助?哪些是违规求助? 4388811
关于积分的说明 13664730
捐赠科研通 4249506
什么是DOI,文献DOI怎么找? 2331607
邀请新用户注册赠送积分活动 1329321
关于科研通互助平台的介绍 1282787