Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction

能源消耗 高效能源利用 深度学习 能量(信号处理) 计算机科学 消费(社会学) 人工智能 物联网 环境科学 工艺工程 机器学习 工程类 嵌入式系统 电气工程 物理 社会科学 量子力学 社会学
作者
N. Yuvaraj,K. R. Sri Preethaa,Girish Wadhwa,Yeon Su Choi,Zengshun Chen,Dong‐Eun Lee,Yirong Mi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (5): 1925-1925 被引量:3
标识
DOI:10.3390/su16051925
摘要

Buildings remain pivotal in global energy consumption, necessitating a focused approach toward enhancing their energy efficiency to alleviate environmental impacts. Precise energy prediction stands as a linchpin in optimizing efficiency, offering indispensable foresight into future energy demands critical for sustainable environments. However, accurately forecasting energy consumption for individual households and commercial buildings presents multifaceted challenges due to their diverse consumption patterns. Leveraging the emerging landscape of the Internet of Things (IoT) in smart homes, coupled with AI-driven energy solutions, presents promising avenues for overcoming these challenges. This study introduces a pioneering approach that harnesses a hybrid deep learning model for energy consumption prediction, strategically amalgamating convolutional neural networks’ features with long short-term memory (LSTM) units. The model harnesses the granularity of IoT-enabled smart meter data, enabling precise energy consumption forecasts in both residential and commercial spaces. In a comparative analysis against established deep learning models, the proposed hybrid model consistently demonstrates superior performance, notably exceling in accurately predicting weekly average energy usage. The study’s innovation lies in its novel model architecture, showcasing an unprecedented capability to forecast energy consumption patterns. This capability holds significant promise in guiding tailored energy management strategies, thereby fostering optimized energy consumption practices in buildings. The demonstrated superiority of the hybrid model underscores its potential to serve as a cornerstone in driving sustainable energy utilization, offering invaluable guidance for a more energy-efficient future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tomorrww完成签到,获得积分10
3秒前
XXF完成签到,获得积分10
4秒前
zty发布了新的文献求助10
5秒前
彭于晏应助欢喜发卡采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
ddm发布了新的文献求助10
10秒前
王晨雨完成签到,获得积分10
11秒前
微笑的铸海完成签到 ,获得积分10
11秒前
maox1aoxin应助彭超采纳,获得30
12秒前
12秒前
13秒前
14秒前
wu发布了新的文献求助10
14秒前
cctoday发布了新的文献求助10
15秒前
Rainbow7发布了新的文献求助10
16秒前
16秒前
希望天下0贩的0应助Naomi-yu采纳,获得10
17秒前
17秒前
Alicia完成签到 ,获得积分10
18秒前
Rick发布了新的文献求助10
19秒前
20秒前
22秒前
桐桐应助Rainbow7采纳,获得10
24秒前
24秒前
25秒前
25秒前
Yu完成签到,获得积分10
26秒前
26秒前
29秒前
xc1234发布了新的文献求助10
29秒前
muyu完成签到,获得积分10
29秒前
30秒前
Rick完成签到,获得积分20
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154407
求助须知:如何正确求助?哪些是违规求助? 2805321
关于积分的说明 7864166
捐赠科研通 2463472
什么是DOI,文献DOI怎么找? 1311341
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821