A Third-order Two Stage Numerical Scheme and Neural Network Simulations for SEIR Epidemic Model: A Numerical Study

人工神经网络 阶段(地层学) 方案(数学) 流行病模型 应用数学 计算机科学 计算机模拟 订单(交换) 统计物理学 数学 人工智能 物理 模拟 数学分析 人口学 生物 经济 社会学 人口 古生物学 财务
作者
Muhammad Shoaib Arif,Kamaleldin Abodayeh,Yasir Nawaz
出处
期刊:Emerging science journal [Ital Publication]
卷期号:8 (1): 326-340 被引量:1
标识
DOI:10.28991/esj-2024-08-01-023
摘要

This study focuses on the cutting-edge field of epidemic modeling, providing a comprehensive investigation of a third-order two-stage numerical approach combined with neural network simulations for the SEIR (Susceptible-Exposed-Infectious-Removed) epidemic model. An explicit numerical scheme is proposed in this work for dealing with both linear and nonlinear boundary value problems. The scheme is built on two grid points, or two time levels, and is third-order. The main advantage of the scheme is its order of accuracy in two stages. Third-order precision is not only not provided by most existing explicit numerical approaches in two phases, but it also necessitates the computation of an additional derivative of the dependent variable. The proposed scheme's consistency and stability are also examined and presented. Nonlinear SEIR (susceptible-exposed-infected-recovered) models are used to implement the scheme. The scheme is compared with the non-standard finite difference and forward Euler methods that are already in use. The graph shows that the plan is more accurate than non-standard finite difference and forward Euler methods that are already in use. The solution obtained is then looked at through the lens of the neural network. The neural network is trained using an optimization approach known as the Levenberg-Marquardt backpropagation (LMB) algorithm. The mean square error across the total number of iterations, error histograms, and regression plots are the various graphs that can be created from this process. This work conducts thorough evaluations to not only identify the strengths and weaknesses of the suggested approach but also to examine its implications for public health intervention. The results of this study make a valuable contribution to the continuously developing field of epidemic modeling. They emphasize the importance of employing modern numerical techniques and machine learning algorithms to enhance our capacity to predict and effectively control infectious diseases. Doi: 10.28991/ESJ-2024-08-01-023 Full Text: PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的高山完成签到 ,获得积分10
3秒前
动点子智慧完成签到,获得积分10
7秒前
9秒前
贪玩的霸完成签到,获得积分10
10秒前
jiangcy发布了新的文献求助30
15秒前
Ivy发布了新的文献求助10
16秒前
村口的帅老头完成签到 ,获得积分10
22秒前
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
NXK完成签到,获得积分10
30秒前
RitaLee发布了新的文献求助10
33秒前
英俊绿海完成签到 ,获得积分10
34秒前
37秒前
38秒前
LZM完成签到,获得积分10
43秒前
Colin发布了新的文献求助30
43秒前
lunian完成签到,获得积分10
44秒前
44秒前
beibei发布了新的文献求助10
44秒前
渔舟唱晚应助RitaLee采纳,获得30
53秒前
53秒前
jiangcy完成签到,获得积分10
53秒前
55秒前
溆玉碎兰笑完成签到 ,获得积分10
58秒前
晚晚完成签到 ,获得积分10
58秒前
59秒前
lunian发布了新的文献求助10
1分钟前
yoyo5678发布了新的文献求助10
1分钟前
weixiaozheng发布了新的文献求助10
1分钟前
1分钟前
赵雪杰发布了新的文献求助10
1分钟前
shirleydream发布了新的文献求助10
1分钟前
斯文的道罡完成签到,获得积分10
1分钟前
Orange应助无铭采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
钱念波应助ardejiang采纳,获得10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3370245
求助须知:如何正确求助?哪些是违规求助? 2988842
关于积分的说明 8732979
捐赠科研通 2671841
什么是DOI,文献DOI怎么找? 1463734
科研通“疑难数据库(出版商)”最低求助积分说明 677287
邀请新用户注册赠送积分活动 668516