MICDnet: Multimodal information processing networks for Crohn’s disease diagnosis

疾病 结肠镜检查 计算机科学 克罗恩病 特征(语言学) 人工智能 多模态 医学 机器学习 病理 内科学 结直肠癌 语言学 癌症 万维网 哲学
作者
Zixi Jia,Yilu Wang,Shengming Li,Meiqi Yang,Zhongyuan Liu,Huijing Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107790-107790 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107790
摘要

Crohn's disease (CD) is a chronic inflammatory disease with increasing incidence worldwide and unclear etiology. Its clinical manifestations vary depending on location, extent, and severity of the lesions. In order to diagnose Crohn's disease, medical professionals need to comprehensively analyze patients' multimodal examination data, which includes medical imaging such as colonoscopy, pathological, and text information from clinical records. The processes of multimodal data analysis require collaboration among medical professionals from different departments, which wastes a lot of time and human resources. Therefore, a multimodal medical assisted diagnosis system for Crohn's disease is particularly significant. Existing network frameworks find it hard to effectively capture multimodal patient data for diagnosis, and multimodal data for Crohn's disease is currently lacking. In addition,a combination of data from patients with similar symptoms could serve as an effective reference for disease diagnosis. Thus, we propose a multimodal information diagnosis network (MICDnet) to learn CD feature representations by integrating colonoscopy, pathology images and clinical texts. Specifically, MICDnet first preprocesses each modality data, then uses encoders to extract image and text features separately. After that, multimodal feature fusion is performed. Finally, CD classification and diagnosis are conducted based on the fused features. Under the authorization, we build a dataset of 136 hospitalized inspectors, with colonoscopy images of seven areas, pathology images, and clinical record text for each individual. Training MICDnet on this dataset shows that multimodal diagnosis can improve the diagnostic accuracy of CD, and the diagnostic performance of MICDnet is superior to other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鹿发布了新的文献求助10
刚刚
刚刚
皮芷卉发布了新的文献求助10
刚刚
坚强从筠完成签到,获得积分10
1秒前
Orange应助啊亮采纳,获得10
1秒前
1秒前
lll发布了新的文献求助10
1秒前
1秒前
瀼瀼发布了新的文献求助10
1秒前
牛牛牛完成签到,获得积分10
2秒前
xin完成签到,获得积分10
2秒前
3秒前
touka666完成签到,获得积分10
6秒前
Tenax发布了新的文献求助10
6秒前
老kai使劲干完成签到 ,获得积分10
6秒前
6秒前
包包发布了新的文献求助10
6秒前
米娅发布了新的文献求助10
6秒前
mindseye完成签到,获得积分20
7秒前
7秒前
3636完成签到,获得积分10
7秒前
小夜子完成签到 ,获得积分10
7秒前
7秒前
袁保蓉完成签到,获得积分10
8秒前
重要元灵发布了新的文献求助10
8秒前
方大锤发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
Smile应助务实的乘云采纳,获得20
10秒前
科研通AI6应助个性的皮带采纳,获得10
10秒前
CipherSage应助T拐拐采纳,获得10
10秒前
蕯匿完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助200
11秒前
记住星辰关注了科研通微信公众号
11秒前
Owen应助昏睡的帆布鞋采纳,获得10
12秒前
煎饼发布了新的文献求助10
12秒前
mwx发布了新的文献求助20
12秒前
拉长的诗蕊完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410362
求助须知:如何正确求助?哪些是违规求助? 4527799
关于积分的说明 14113081
捐赠科研通 4442420
什么是DOI,文献DOI怎么找? 2437935
邀请新用户注册赠送积分活动 1429942
关于科研通互助平台的介绍 1407876