MICDnet: Multimodal information processing networks for Crohn’s disease diagnosis

疾病 结肠镜检查 计算机科学 克罗恩病 特征(语言学) 人工智能 多模态 医学 机器学习 病理 内科学 结直肠癌 语言学 哲学 癌症 万维网
作者
Zixi Jia,Yilu Wang,Shengming Li,Meiqi Yang,Zhongyuan Liu,Huijing Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107790-107790 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107790
摘要

Crohn's disease (CD) is a chronic inflammatory disease with increasing incidence worldwide and unclear etiology. Its clinical manifestations vary depending on location, extent, and severity of the lesions. In order to diagnose Crohn's disease, medical professionals need to comprehensively analyze patients' multimodal examination data, which includes medical imaging such as colonoscopy, pathological, and text information from clinical records. The processes of multimodal data analysis require collaboration among medical professionals from different departments, which wastes a lot of time and human resources. Therefore, a multimodal medical assisted diagnosis system for Crohn's disease is particularly significant. Existing network frameworks find it hard to effectively capture multimodal patient data for diagnosis, and multimodal data for Crohn's disease is currently lacking. In addition,a combination of data from patients with similar symptoms could serve as an effective reference for disease diagnosis. Thus, we propose a multimodal information diagnosis network (MICDnet) to learn CD feature representations by integrating colonoscopy, pathology images and clinical texts. Specifically, MICDnet first preprocesses each modality data, then uses encoders to extract image and text features separately. After that, multimodal feature fusion is performed. Finally, CD classification and diagnosis are conducted based on the fused features. Under the authorization, we build a dataset of 136 hospitalized inspectors, with colonoscopy images of seven areas, pathology images, and clinical record text for each individual. Training MICDnet on this dataset shows that multimodal diagnosis can improve the diagnostic accuracy of CD, and the diagnostic performance of MICDnet is superior to other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dravia发布了新的文献求助30
刚刚
归尘应助任老三采纳,获得10
刚刚
jasmine发布了新的文献求助10
刚刚
隐形曼青应助mariawang采纳,获得10
刚刚
1秒前
哈密哈密完成签到,获得积分10
1秒前
luckily发布了新的文献求助10
2秒前
6秒前
小李博士发布了新的文献求助10
6秒前
yuM发布了新的文献求助50
6秒前
6秒前
wubobo发布了新的文献求助10
7秒前
7秒前
8秒前
顾矜应助芮明霞采纳,获得10
9秒前
正直的夏真完成签到 ,获得积分10
11秒前
11秒前
Jasper应助合适成风采纳,获得10
11秒前
复杂的海完成签到,获得积分10
15秒前
berry完成签到,获得积分10
15秒前
yydragen应助yuM采纳,获得40
15秒前
仁爱的乐枫完成签到,获得积分20
15秒前
16秒前
田様应助罗白翠采纳,获得10
16秒前
17秒前
柚子发布了新的文献求助10
20秒前
墩墩应助无限的信封采纳,获得10
21秒前
22秒前
含蓄虔纹发布了新的文献求助10
22秒前
27秒前
江小白完成签到,获得积分0
28秒前
小可爱521应助宗友绿采纳,获得50
28秒前
像昨天一样晚安完成签到,获得积分10
30秒前
胖大海完成签到,获得积分20
30秒前
Nnn完成签到 ,获得积分10
30秒前
合适成风发布了新的文献求助10
31秒前
含蓄虔纹完成签到,获得积分20
32秒前
33秒前
Owen应助薯薯鼠鼠采纳,获得10
33秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571