Multi-task deep learning for large-scale buildings energy management

异常检测 计算机科学 任务(项目管理) 能源消耗 机器学习 人工智能 多任务学习 深度学习 任务分析 能量(信号处理) 异常(物理) 高效能源利用 数据挖掘 工程类 系统工程 统计 物理 电气工程 数学 凝聚态物理
作者
Rui Wang,Rakiba Rayhana,Majid Gholami,Omar E. Herrera,Zheng Liu,Walter Mérida
出处
期刊:Energy and Buildings [Elsevier]
卷期号:307: 113964-113964 被引量:1
标识
DOI:10.1016/j.enbuild.2024.113964
摘要

Building energy management acts as the brain of the building, which controls the energy supply based on sensor data and algorithms. However, existing methods only focus on single-task prediction like load forecasting. As more multi-variable data is collected from ubiquitous sensors, building energy management needs to extend functionality from single-task to multi-purpose predictions. This study designs a multi-task learning system to tackle four different tasks: 1. Electricity load forecasting; 2. Air temperature forecasting; 3. Energy anomaly detection; 4. Energy anomaly prediction. A mixture-of-experts framework with the self-attention mechanism is proposed for learning heterogeneous tasks. A new comprehensive dataset has been created with real data to demonstrate the heterogeneous tasks' efficacy of the suggested framework. Extensive experiments are conducted with various deep learning models, which shows our proposed model achieves superior prediction performance overall tasks. Comparative studies are performed to explore the correlations between forecasting and anomaly learning, which reveal the benefits of multi-task learning for heterogeneous tasks. Anomaly detection and prediction both achieve 98% accuracy and 95% F1-score, while the electricity load forecasting single-task error is reduced by almost 60% through the multi-task model. Nonetheless, the tasks' training difficulties and resource consumption are also investigated and the deeper network doesn't ensure better performances. The dataset is open-sourced at: https://github.com/rekingbc/Multi-task-building.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助juaner采纳,获得10
1秒前
1秒前
2秒前
2秒前
Orange应助聪明新梅采纳,获得10
3秒前
3秒前
Mashiro发布了新的文献求助10
3秒前
Zhang发布了新的文献求助10
3秒前
JM发布了新的文献求助10
3秒前
朱云发布了新的文献求助10
4秒前
杨佳宁发布了新的文献求助10
4秒前
十号发布了新的文献求助10
5秒前
落后的乌龟应助小太阳采纳,获得10
5秒前
5秒前
领导范儿应助shu采纳,获得10
5秒前
chemchen完成签到,获得积分10
5秒前
HZH完成签到,获得积分10
5秒前
圆圆901234发布了新的文献求助30
6秒前
7秒前
花粉过敏完成签到,获得积分10
8秒前
KXQ发布了新的文献求助10
8秒前
科研通AI2S应助敲敲采纳,获得10
8秒前
霜序完成签到,获得积分10
9秒前
水蔓菁完成签到,获得积分10
9秒前
momo完成签到 ,获得积分10
9秒前
9秒前
9秒前
还单身的老虎完成签到,获得积分10
9秒前
Mashiro完成签到,获得积分10
9秒前
无花果应助优雅的听兰采纳,获得10
10秒前
真实的南琴完成签到,获得积分10
11秒前
11秒前
勤奋白昼完成签到,获得积分20
11秒前
CodeCraft应助gan采纳,获得10
12秒前
英俊的铭应助0000采纳,获得10
12秒前
12秒前
xxx发布了新的文献求助10
14秒前
14秒前
yang发布了新的文献求助30
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049