Multi-task deep learning for large-scale buildings energy management

异常检测 计算机科学 任务(项目管理) 能源消耗 机器学习 人工智能 多任务学习 深度学习 任务分析 能量(信号处理) 异常(物理) 高效能源利用 数据挖掘 工程类 系统工程 统计 物理 电气工程 数学 凝聚态物理
作者
Rui Wang,Rakiba Rayhana,Majid Gholami,Omar E. Herrera,Zheng Liu,Walter Mérida
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:307: 113964-113964 被引量:1
标识
DOI:10.1016/j.enbuild.2024.113964
摘要

Building energy management acts as the brain of the building, which controls the energy supply based on sensor data and algorithms. However, existing methods only focus on single-task prediction like load forecasting. As more multi-variable data is collected from ubiquitous sensors, building energy management needs to extend functionality from single-task to multi-purpose predictions. This study designs a multi-task learning system to tackle four different tasks: 1. Electricity load forecasting; 2. Air temperature forecasting; 3. Energy anomaly detection; 4. Energy anomaly prediction. A mixture-of-experts framework with the self-attention mechanism is proposed for learning heterogeneous tasks. A new comprehensive dataset has been created with real data to demonstrate the heterogeneous tasks' efficacy of the suggested framework. Extensive experiments are conducted with various deep learning models, which shows our proposed model achieves superior prediction performance overall tasks. Comparative studies are performed to explore the correlations between forecasting and anomaly learning, which reveal the benefits of multi-task learning for heterogeneous tasks. Anomaly detection and prediction both achieve 98% accuracy and 95% F1-score, while the electricity load forecasting single-task error is reduced by almost 60% through the multi-task model. Nonetheless, the tasks' training difficulties and resource consumption are also investigated and the deeper network doesn't ensure better performances. The dataset is open-sourced at: https://github.com/rekingbc/Multi-task-building.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
ding应助曾宪俊采纳,获得10
7秒前
zhui发布了新的文献求助10
8秒前
加菲不掉毛完成签到,获得积分20
9秒前
江洋大盗发布了新的文献求助10
11秒前
12秒前
过眼云烟完成签到,获得积分10
14秒前
所所应助石头慢半拍采纳,获得10
15秒前
ppaahan完成签到,获得积分10
15秒前
zhui完成签到,获得积分10
16秒前
NexusExplorer应助实验耗材采纳,获得10
17秒前
19秒前
汉堡包应助annzl采纳,获得10
20秒前
ggwp完成签到,获得积分10
22秒前
22秒前
ppaahan发布了新的文献求助10
23秒前
spark发布了新的文献求助10
24秒前
25秒前
壮观的擎发布了新的文献求助10
27秒前
27秒前
ggwp发布了新的文献求助10
27秒前
yeguo发布了新的文献求助10
28秒前
丘比特应助帝国之刃采纳,获得10
28秒前
韩哈哈发布了新的文献求助10
31秒前
乖猫要努力应助liaomr采纳,获得10
32秒前
32秒前
34秒前
大菠萝发布了新的文献求助10
34秒前
auuu发布了新的文献求助10
36秒前
乐乐应助ppaahan采纳,获得10
38秒前
sdshi完成签到,获得积分10
38秒前
上官若男应助Brot_12采纳,获得10
39秒前
呼君伟完成签到 ,获得积分10
41秒前
5annnn发布了新的文献求助10
41秒前
yeguo完成签到,获得积分10
42秒前
44秒前
量子星尘发布了新的文献求助10
46秒前
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160