波形
声学
登录中
地质学
计算机科学
物理
电信
地理
雷达
林业
作者
Hua Wang,Tianlin Liu,Yunjia Ji
出处
期刊:Geophysics
[Society of Exploration Geophysicists]
日期:2024-03-27
卷期号:89 (3): D159-D170
标识
DOI:10.1190/geo2023-0316.1
摘要
Acoustic logging is one of the most promising methods for the quantitative evaluation of cement bond conditions in cased holes. However, inefficient use of full-wave information yields unsatisfactory interpretation accuracy. Fundamentally, this is because the wavefield characteristics have not been thoroughly investigated under various cement bonding conditions. Thus, this study derives analytical solutions of wavefields for a single-cased-hole model and emphasizes the dispersion calculation algorithm. To solve the dispersion equation when solving for the poles of the propagating modes with real wavenumbers, we renormalize the Bessel function related to the borehole fluid by multiplying it with an attenuation factor. For leaky modes with complex wavenumbers, we develop a novel method to find local peaks of the matrix condition number (LPMCN) in the frequency domain to determine dispersion poles, avoiding the local optimization issues resulting from the traditional Gauss-Newton iteration method. Combining these two methods, we establish a fast and accurate workflow for evaluating the dispersion of all modes in cased holes using a relatively fast bisection method to manage the dispersion of the propagating modes and using the LPMCN method to derive the dispersion curves of leaky modes. Furthermore, all propagating modes are individually investigated in the monopole measurement by evaluating the residues of the real poles in a casing-free model. The analysis demonstrates that the first-order pseudo-Rayleigh wave (PR1) and inner Stoneley wave (ST1) are the two strongest modes. Finally, we focus on the waveforms and dispersion characteristics of the outer Stoneley wave (ST2) related to the fluid channel in the cement annulus. The results reveal that as the fluid thickness increases, the phase velocity of the ST2 mode decreases, and its amplitude increases. Therefore, the ST2 mode can potentially evaluate the thickness of the fluid channel in a cement annulus if an effective weak-signal-extraction method is used.
科研通智能强力驱动
Strongly Powered by AbleSci AI