Physics-informed deep learning for scattered full wavefield reconstruction from a sparse set of sensor data for impact diagnosis in structural health monitoring

压缩传感 结构健康监测 外推法 计算机科学 人工神经网络 算法 稳健性(进化) 人工智能 数学 工程类 数学分析 生物化学 结构工程 基因 化学
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (5): 2963-2979 被引量:6
标识
DOI:10.1177/14759217231202547
摘要

This paper presents a physics-informed deep learning framework for the reconstruction of full scattered spatiotemporal Lamb wavefields (video images) in plate-like structures from a sparse set of time-series sensor data. The reconstructed scattered wavefield contains a wealth of information about the wave propagation phenomenon including any interactions of the propagating wave with damage in the structure. This information is paramount for damage diagnosis as is demonstrated in this paper via impact diagnosis—a key structural health monitoring application. A physics-informed neural network (PINN) that encodes the underlying elastodynamic field equations into the learning/training process in the neural network is proposed for this purpose. This prior wavefield physics knowledge embedded in the loss function acts as a regularization agent for the minimization problem in the neural network training, thereby enabling the extrapolation of a sparse set of one-dimensional time-series signals into two-dimensional scattered wavefield. The wavefield reconstruction capabilities of the proposed supervised forward PINN framework are first verified both numerically and experimentally for a stiffened aluminum panel under a couple of narrowband ultrasonic-frequency excitations, and the results confirm its robustness to low spatial resolution and substantial noise in the measured sensor data. The PINN requires far fewer sensors for scattered wavefield reconstruction, thereby permitting for a higher sensor spacing or lower spatial sampling. To this end, it is shown that a sensor spacing of 5λ generates good wavefield reconstruction accuracy, which is a 10-fold increase over the Nyquist–Shannon sampling limit (λ/2). Two sets of experiments are then conducted on a long-stiffened aluminum panel to validate the proposed framework via low-velocity impact diagnosis in the near-ultrasonic frequency range. The first set of experiments, with the known excitation force incorporated into the PINN, allows the wavefields to be accurately reconstructed with the sensor spacing up to 5λ as expected. The second set of experiments assumes unknown impact force history—a classical case of impact diagnosis where the impact force history is not known a priori. It is shown that the wavefield reconstruction through PINN still provides good accuracy albeit with a less generous sensor spacing of 2λ. A convolutional neural network long short-term memory (CNN-LSTM) model then solves the mathematically inverse problem of inferring the impact location and impact force history by analyzing the reconstructed impact generated wavefield. The impact location is predicted well with 93% accuracy, and the impact force history is reconstructed with 90% accuracy, further validating the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bobo完成签到,获得积分10
1秒前
洋洋爱吃枣完成签到 ,获得积分10
3秒前
夏夏发布了新的文献求助10
8秒前
10秒前
Xu发布了新的文献求助10
15秒前
夏夏完成签到,获得积分10
20秒前
23秒前
幽默的妍完成签到 ,获得积分10
24秒前
可可完成签到 ,获得积分10
26秒前
言午完成签到 ,获得积分10
26秒前
junjie发布了新的文献求助10
26秒前
浮浮世世完成签到,获得积分10
30秒前
淡然的芷荷完成签到 ,获得积分10
33秒前
fge完成签到,获得积分10
35秒前
玻璃外的世界完成签到,获得积分10
39秒前
1111111111应助科研通管家采纳,获得10
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
leaolf应助科研通管家采纳,获得150
42秒前
Ava应助科研通管家采纳,获得10
42秒前
顾矜应助科研通管家采纳,获得10
42秒前
任kun发布了新的文献求助10
43秒前
好学的泷泷完成签到 ,获得积分10
44秒前
nano完成签到 ,获得积分10
44秒前
48秒前
纯真保温杯完成签到 ,获得积分10
52秒前
刘佳佳完成签到 ,获得积分10
53秒前
宝贝完成签到 ,获得积分10
55秒前
玛斯特尔完成签到,获得积分10
58秒前
看文献完成签到,获得积分0
59秒前
Joanne完成签到 ,获得积分10
59秒前
hikevin126完成签到,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
mango发布了新的文献求助10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
杨杨杨完成签到,获得积分10
1分钟前
jzmulyl完成签到,获得积分10
1分钟前
506407完成签到,获得积分10
1分钟前
aki完成签到 ,获得积分10
1分钟前
天才小榴莲完成签到,获得积分10
1分钟前
朴素羊完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918746
求助须知:如何正确求助?哪些是违规求助? 4191111
关于积分的说明 13015764
捐赠科研通 3961150
什么是DOI,文献DOI怎么找? 2171519
邀请新用户注册赠送积分活动 1189578
关于科研通互助平台的介绍 1098155