Physics-informed deep learning for scattered full wavefield reconstruction from a sparse set of sensor data for impact diagnosis in structural health monitoring

压缩传感 结构健康监测 外推法 计算机科学 人工神经网络 算法 稳健性(进化) 人工智能 数学 工程类 数学分析 结构工程 生物化学 化学 基因
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (5): 2963-2979 被引量:1
标识
DOI:10.1177/14759217231202547
摘要

This paper presents a physics-informed deep learning framework for the reconstruction of full scattered spatiotemporal Lamb wavefields (video images) in plate-like structures from a sparse set of time-series sensor data. The reconstructed scattered wavefield contains a wealth of information about the wave propagation phenomenon including any interactions of the propagating wave with damage in the structure. This information is paramount for damage diagnosis as is demonstrated in this paper via impact diagnosis—a key structural health monitoring application. A physics-informed neural network (PINN) that encodes the underlying elastodynamic field equations into the learning/training process in the neural network is proposed for this purpose. This prior wavefield physics knowledge embedded in the loss function acts as a regularization agent for the minimization problem in the neural network training, thereby enabling the extrapolation of a sparse set of one-dimensional time-series signals into two-dimensional scattered wavefield. The wavefield reconstruction capabilities of the proposed supervised forward PINN framework are first verified both numerically and experimentally for a stiffened aluminum panel under a couple of narrowband ultrasonic-frequency excitations, and the results confirm its robustness to low spatial resolution and substantial noise in the measured sensor data. The PINN requires far fewer sensors for scattered wavefield reconstruction, thereby permitting for a higher sensor spacing or lower spatial sampling. To this end, it is shown that a sensor spacing of 5λ generates good wavefield reconstruction accuracy, which is a 10-fold increase over the Nyquist–Shannon sampling limit (λ/2). Two sets of experiments are then conducted on a long-stiffened aluminum panel to validate the proposed framework via low-velocity impact diagnosis in the near-ultrasonic frequency range. The first set of experiments, with the known excitation force incorporated into the PINN, allows the wavefields to be accurately reconstructed with the sensor spacing up to 5λ as expected. The second set of experiments assumes unknown impact force history—a classical case of impact diagnosis where the impact force history is not known a priori. It is shown that the wavefield reconstruction through PINN still provides good accuracy albeit with a less generous sensor spacing of 2λ. A convolutional neural network long short-term memory (CNN-LSTM) model then solves the mathematically inverse problem of inferring the impact location and impact force history by analyzing the reconstructed impact generated wavefield. The impact location is predicted well with 93% accuracy, and the impact force history is reconstructed with 90% accuracy, further validating the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lll完成签到,获得积分10
2秒前
小谷发布了新的文献求助10
3秒前
明亮夕阳完成签到,获得积分10
3秒前
wanci应助huang采纳,获得10
5秒前
xiaisxi发布了新的文献求助10
5秒前
6秒前
wuxx完成签到,获得积分10
7秒前
pywangsmmu92完成签到,获得积分10
8秒前
10秒前
小谷完成签到,获得积分10
12秒前
13秒前
可乐关注了科研通微信公众号
13秒前
小羊肖恩完成签到,获得积分10
14秒前
荞麦馒头完成签到,获得积分10
15秒前
laura发布了新的文献求助10
15秒前
hamburger发布了新的文献求助10
16秒前
小兔子乖乖完成签到,获得积分10
16秒前
汉堡包应助ohh采纳,获得10
16秒前
18秒前
22秒前
22秒前
希望天下0贩的0应助djbj2022采纳,获得10
22秒前
所所应助hamburger采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
23秒前
mmyhn应助科研通管家采纳,获得20
23秒前
情怀应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
kk应助科研通管家采纳,获得10
23秒前
huang发布了新的文献求助10
24秒前
wanci应助顺利的尔烟采纳,获得10
25秒前
可乐发布了新的文献求助30
25秒前
26秒前
26秒前
Akim应助lingo采纳,获得10
27秒前
28秒前
28秒前
君华海逸完成签到,获得积分10
29秒前
zhan20200503发布了新的文献求助10
29秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120210
求助须知:如何正确求助?哪些是违规求助? 2770892
关于积分的说明 7705676
捐赠科研通 2426002
什么是DOI,文献DOI怎么找? 1288370
科研通“疑难数据库(出版商)”最低求助积分说明 620949
版权声明 600010