Physics-informed deep learning for scattered full wavefield reconstruction from a sparse set of sensor data for impact diagnosis in structural health monitoring

压缩传感 结构健康监测 外推法 计算机科学 人工神经网络 算法 稳健性(进化) 人工智能 数学 工程类 数学分析 结构工程 生物化学 化学 基因
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (5): 2963-2979 被引量:6
标识
DOI:10.1177/14759217231202547
摘要

This paper presents a physics-informed deep learning framework for the reconstruction of full scattered spatiotemporal Lamb wavefields (video images) in plate-like structures from a sparse set of time-series sensor data. The reconstructed scattered wavefield contains a wealth of information about the wave propagation phenomenon including any interactions of the propagating wave with damage in the structure. This information is paramount for damage diagnosis as is demonstrated in this paper via impact diagnosis—a key structural health monitoring application. A physics-informed neural network (PINN) that encodes the underlying elastodynamic field equations into the learning/training process in the neural network is proposed for this purpose. This prior wavefield physics knowledge embedded in the loss function acts as a regularization agent for the minimization problem in the neural network training, thereby enabling the extrapolation of a sparse set of one-dimensional time-series signals into two-dimensional scattered wavefield. The wavefield reconstruction capabilities of the proposed supervised forward PINN framework are first verified both numerically and experimentally for a stiffened aluminum panel under a couple of narrowband ultrasonic-frequency excitations, and the results confirm its robustness to low spatial resolution and substantial noise in the measured sensor data. The PINN requires far fewer sensors for scattered wavefield reconstruction, thereby permitting for a higher sensor spacing or lower spatial sampling. To this end, it is shown that a sensor spacing of 5λ generates good wavefield reconstruction accuracy, which is a 10-fold increase over the Nyquist–Shannon sampling limit (λ/2). Two sets of experiments are then conducted on a long-stiffened aluminum panel to validate the proposed framework via low-velocity impact diagnosis in the near-ultrasonic frequency range. The first set of experiments, with the known excitation force incorporated into the PINN, allows the wavefields to be accurately reconstructed with the sensor spacing up to 5λ as expected. The second set of experiments assumes unknown impact force history—a classical case of impact diagnosis where the impact force history is not known a priori. It is shown that the wavefield reconstruction through PINN still provides good accuracy albeit with a less generous sensor spacing of 2λ. A convolutional neural network long short-term memory (CNN-LSTM) model then solves the mathematically inverse problem of inferring the impact location and impact force history by analyzing the reconstructed impact generated wavefield. The impact location is predicted well with 93% accuracy, and the impact force history is reconstructed with 90% accuracy, further validating the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助任性醉山采纳,获得10
刚刚
调皮的海之完成签到,获得积分10
刚刚
科研通AI5应助小帅采纳,获得10
刚刚
蝶妹儿完成签到,获得积分10
刚刚
ChenJiahao完成签到,获得积分10
1秒前
1秒前
1秒前
嘟嘟嘟发布了新的文献求助10
1秒前
香蕉觅云应助mcjddh采纳,获得10
2秒前
酚酞v完成签到 ,获得积分10
2秒前
科研通AI6应助YZQ采纳,获得10
2秒前
pufanlg发布了新的文献求助10
2秒前
3秒前
帽子完成签到,获得积分10
3秒前
4秒前
Darsine发布了新的文献求助10
4秒前
酷炫小天鹅完成签到,获得积分10
4秒前
4秒前
4秒前
疯少发布了新的文献求助10
4秒前
科研通AI6应助邱智聪采纳,获得10
5秒前
常常发布了新的文献求助10
5秒前
5秒前
6秒前
领导范儿应助嘟嘟嘟采纳,获得10
6秒前
xvping发布了新的文献求助30
6秒前
dw发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
山前完成签到,获得积分10
8秒前
yulong完成签到 ,获得积分10
8秒前
笨笨发布了新的文献求助10
8秒前
9秒前
Rython完成签到,获得积分10
9秒前
xiaohan,JIA完成签到,获得积分10
9秒前
ic5067完成签到,获得积分10
9秒前
9秒前
踏实丹亦发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949