亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed deep learning for scattered full wavefield reconstruction from a sparse set of sensor data for impact diagnosis in structural health monitoring

压缩传感 结构健康监测 外推法 计算机科学 人工神经网络 算法 稳健性(进化) 人工智能 数学 工程类 数学分析 结构工程 生物化学 化学 基因
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (5): 2963-2979 被引量:6
标识
DOI:10.1177/14759217231202547
摘要

This paper presents a physics-informed deep learning framework for the reconstruction of full scattered spatiotemporal Lamb wavefields (video images) in plate-like structures from a sparse set of time-series sensor data. The reconstructed scattered wavefield contains a wealth of information about the wave propagation phenomenon including any interactions of the propagating wave with damage in the structure. This information is paramount for damage diagnosis as is demonstrated in this paper via impact diagnosis—a key structural health monitoring application. A physics-informed neural network (PINN) that encodes the underlying elastodynamic field equations into the learning/training process in the neural network is proposed for this purpose. This prior wavefield physics knowledge embedded in the loss function acts as a regularization agent for the minimization problem in the neural network training, thereby enabling the extrapolation of a sparse set of one-dimensional time-series signals into two-dimensional scattered wavefield. The wavefield reconstruction capabilities of the proposed supervised forward PINN framework are first verified both numerically and experimentally for a stiffened aluminum panel under a couple of narrowband ultrasonic-frequency excitations, and the results confirm its robustness to low spatial resolution and substantial noise in the measured sensor data. The PINN requires far fewer sensors for scattered wavefield reconstruction, thereby permitting for a higher sensor spacing or lower spatial sampling. To this end, it is shown that a sensor spacing of 5λ generates good wavefield reconstruction accuracy, which is a 10-fold increase over the Nyquist–Shannon sampling limit (λ/2). Two sets of experiments are then conducted on a long-stiffened aluminum panel to validate the proposed framework via low-velocity impact diagnosis in the near-ultrasonic frequency range. The first set of experiments, with the known excitation force incorporated into the PINN, allows the wavefields to be accurately reconstructed with the sensor spacing up to 5λ as expected. The second set of experiments assumes unknown impact force history—a classical case of impact diagnosis where the impact force history is not known a priori. It is shown that the wavefield reconstruction through PINN still provides good accuracy albeit with a less generous sensor spacing of 2λ. A convolutional neural network long short-term memory (CNN-LSTM) model then solves the mathematically inverse problem of inferring the impact location and impact force history by analyzing the reconstructed impact generated wavefield. The impact location is predicted well with 93% accuracy, and the impact force history is reconstructed with 90% accuracy, further validating the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
35秒前
43秒前
54秒前
Leah完成签到,获得积分10
58秒前
Lucas应助科研通管家采纳,获得10
1分钟前
胡萝卜完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Everything发布了新的文献求助10
1分钟前
蛋挞完成签到 ,获得积分10
2分钟前
Everything发布了新的文献求助10
2分钟前
2分钟前
Everything发布了新的文献求助10
2分钟前
2分钟前
Monicadd完成签到 ,获得积分10
2分钟前
2分钟前
Everything发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
Zephyr发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
4分钟前
wangfaqing942完成签到 ,获得积分10
4分钟前
4分钟前
如沐春风完成签到,获得积分10
4分钟前
如沐春风发布了新的文献求助10
4分钟前
Hello应助如沐春风采纳,获得10
4分钟前
4分钟前
4分钟前
爆米花应助Everything采纳,获得10
5分钟前
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
Eileen发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Sandy应助Eileen采纳,获得20
5分钟前
muasa关注了科研通微信公众号
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008162
求助须知:如何正确求助?哪些是违规求助? 3547980
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188