Unraveling Quantum Mysteries: Probing the Interplay of CdS Quantum Dots and g-C3N4 Nanosheets for Enhanced Photo/Electrocatalytic Hydrogen Evolution

析氧 电催化剂 双功能 分解水 异质结 材料科学 量子点 催化作用 法拉第效率 制氢 电化学 光化学 化学工程 化学 光催化 纳米技术 物理化学 电极 光电子学 有机化学 工程类
作者
Amir Mehtab,Pravin P. Ingole,Jahangeer Ahmed,Yuanbing Mao,Tokeer Ahmad
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (1): 85-94 被引量:48
标识
DOI:10.1021/acs.jpcc.3c06080
摘要

A series of CdS quantum dots (QDs) at low temperature were grown on the nanosheets (NSs) of g-C3N4 through an in situ successive ionic layer adsorption and reaction process. The visible light active band gap of ultrathin g-C3N4 NSs has attracted more attention due to its essential bandgap for the water splitting reaction. However, a single catalyst with a limited number of active sites does not exhibit significant photo/electrocatalytic activity for hydrogen production. In current strategies, the development of a photogenerated charge transfer-driven type-II CdS QDs/g-C3N4 heterostructure demonstrates an enhanced hydrogen evolution reaction with an amount of 14.8 mmol gcat–1 of H2 gas and an AQY of 27.6% as a result of a decreased charge transfer resistance and a significantly increased electrochemical surface area. Additionally, the as-prepared catalyst has shown overpotentials of 182 and 382 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) reactions to reach the current density at 10 mA cm–2, respectively. In addition, the bifunctional electrocatalyst exhibits a 4- and 6-fold higher mass current density of heterostructure material for the OER and HER reactions as compared to g-C3N4, with a considerable faradaic efficiency under the potentiostatic system, respectively. Moreover, the remarkable photo/electrocatalytic activity of the CdS QDs/g-C3N4 heterostructure was well explained through the photoluminescence quenching effect and Mott–Schottky analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
shouyu29应助科研通管家采纳,获得10
刚刚
刚刚
小金应助科研通管家采纳,获得20
刚刚
牛逼的昂完成签到,获得积分10
刚刚
muzi给muzi的求助进行了留言
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
yuhang完成签到 ,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
果汁完成签到,获得积分10
1秒前
NexusExplorer应助Zoe采纳,获得10
1秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
领导范儿应助junzilan采纳,获得10
3秒前
打打应助激动的一手采纳,获得10
3秒前
酷波er应助艺玲采纳,获得10
4秒前
longtengfei发布了新的文献求助10
4秒前
5秒前
5秒前
ZL发布了新的文献求助10
7秒前
luca发布了新的文献求助10
7秒前
ruby发布了新的文献求助10
7秒前
沉静的颦发布了新的文献求助10
8秒前
8秒前
cjy完成签到,获得积分10
8秒前
8秒前
9秒前
Zoe完成签到,获得积分10
9秒前
9秒前
9秒前
任性完成签到,获得积分10
9秒前
an发布了新的文献求助10
10秒前
10秒前
领导范儿应助袅袅采纳,获得10
10秒前
若狂完成签到,获得积分10
10秒前
Gyy完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759