Designing a Fall Prediction Model for Inpatient Rehabilitation Facilities Using Readily Available Data

切断 接收机工作特性 康复 列线图 回顾性队列研究 逻辑回归 比例(比率) 队列 医学 物理疗法 统计 内科学 数学 地图学 物理 量子力学 地理
作者
Jonathan R. Wright,Jamie D’Ausilio,Janene M. Holmberg,Misti Timpson,Trevor Preston,Devyn Woodfield,Gregory L. Snow
出处
期刊:Archives of Physical Medicine and Rehabilitation [Elsevier]
卷期号:105 (4): 704-709 被引量:2
标识
DOI:10.1016/j.apmr.2023.11.007
摘要

To create a fall risk assessment tool for inpatient rehabilitation facilities (IRFs) using available data and compare its predictive accuracy with that of the Morse Fall Scale (MFS).We conducted a secondary analysis from a retrospective cohort study. Using a nomogram that displayed the contributions of QI codes associated with falls in a multivariable logistic regression model, we created a novel fall risk assessment, the Inpatient Rehabilitation Fall Scale (IRF Scale). To compare the predictive accuracy of the IRF Scale and MFS, we used receiver operator characteristic (ROC) curve analysis.We included data from 4 IRFs owned and operated by Intermountain Health.Data came from the medical records of 1699 patients. All participants were over the age of 14 and were admitted and discharged from 1 of the 4 sites between January 1 and December 31, 2020.Not applicable.We assigned point values on the IRF Scale based on the adjusted associations of QI codes with falls. Using ROC curve analysis, we discovered an optimal cutoff score, sensitivity, specificity, and overall AUC of the IRF Scale and MFS.ROC curve analysis revealed the optimal IRF Scale cutoff score of 22.4 yielded a sensitivity of 0.74 and a specificity of 0.63. With an AUC of 0.72, the IRF Scale demonstrated acceptable accuracy at identifying patients who fell in our retrospective cohort.Because the IRF Scale uses readily available data, it minimizes staff assessment and outperforms the MFS at identifying patients who previously fell. Prospective research is needed to investigate if it can adequately identify in advance which patients will fall during their IRF stay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心珠完成签到,获得积分10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
明亮幻枫应助科研通管家采纳,获得10
1秒前
Kevin完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
黎樱完成签到,获得积分10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
杨羕发布了新的文献求助10
3秒前
打打应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得20
3秒前
打打应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
cloud完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
搜集达人应助HHEHK采纳,获得10
6秒前
zhouyou完成签到,获得积分10
6秒前
威武无施发布了新的文献求助10
7秒前
万能图书馆应助zzz采纳,获得10
9秒前
9秒前
10秒前
在九月发布了新的文献求助10
11秒前
Naomi发布了新的文献求助10
11秒前
SibetHu发布了新的文献求助10
11秒前
小马甲应助学术混子采纳,获得10
12秒前
汉堡包应助承乐采纳,获得10
12秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Synchrotron X-Ray Methods in Clay Science 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3345652
求助须知:如何正确求助?哪些是违规求助? 2972569
关于积分的说明 8654451
捐赠科研通 2652785
什么是DOI,文献DOI怎么找? 1452737
科研通“疑难数据库(出版商)”最低求助积分说明 672639
邀请新用户注册赠送积分活动 662384