A Multimodal Dynamic Hand Gesture Recognition Based on Radar–Vision Fusion

计算机科学 稳健性(进化) 手势 人工智能 手势识别 计算机视觉 适应性 传感器融合 语音识别 模式识别(心理学) 生态学 生物化学 化学 生物 基因
作者
Haoming Liu,Zhenyu Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:13
标识
DOI:10.1109/tim.2023.3253906
摘要

Regarding increasingly complex scenarios in hand gesture recognition (HGR), it is challenging to implement a reliable HGR due to the non-adaptability of individual sensors to the environment and the discrepancy of personal habits. Multisensor fusion has been deemed an effective way to overcome the limitations of a single sensor. However, there is a lack of research on HGR to effectively establish bridges linking multimodal heterogeneous information. To address this issue, we propose a novel multimodal dynamic HGR method based on a two-branch fusion deformable network with Gram matching. First, a time-synchronized method is designed to preprocess the multimodal data. Second, a two-branch network is proposed to implement gesture classification based on radar-vision fusion. The input convolution is replaced by the deformable convolution to improve the generalization of gesture motion modeling. The long short-term memory (LSTM) unit is utilized to extract the temporal features of dynamic hand gestures. Third, Gram matching is presented as a loss function to mine high-dimensional heterogeneous information and maintain the integrity of radar-vision fusion. The experimental results indicate that the proposed method effectively improves the adaptability of the classifier to complex environments and exhibits satisfactory robustness to multiple subjects. Furthermore, ablation analysis shows that deformable convolution and Gram loss not only provide reliable gesture recognition but also enhance the generalization ability of the proposed methods in different field-of-view scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanggu11完成签到,获得积分10
刚刚
WeiSS发布了新的文献求助10
1秒前
满意大门发布了新的文献求助10
1秒前
1秒前
海4015完成签到,获得积分10
2秒前
5秒前
小李熊猫完成签到,获得积分10
6秒前
张晓娜完成签到,获得积分10
9秒前
Ar完成签到,获得积分10
12秒前
可靠的秋尽关注了科研通微信公众号
12秒前
shenren完成签到,获得积分10
13秒前
JamesPei应助秃顶双马尾采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
xiaoyun2852完成签到,获得积分0
15秒前
李爱国应助黄淮二傻采纳,获得10
17秒前
19秒前
pcyang完成签到,获得积分10
23秒前
king完成签到,获得积分10
24秒前
nnnny发布了新的文献求助50
29秒前
29秒前
30秒前
Lucia_yx完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
LSJ完成签到,获得积分10
34秒前
35秒前
36秒前
36秒前
搜集达人应助十七采纳,获得10
37秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128954
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744576
捐赠科研通 2434926
什么是DOI,文献DOI怎么找? 1293779
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530