A Multimodal Dynamic Hand Gesture Recognition Based on Radar–Vision Fusion

计算机科学 稳健性(进化) 手势 人工智能 手势识别 计算机视觉 适应性 传感器融合 语音识别 模式识别(心理学) 生态学 生物化学 生物 基因 化学
作者
Haoming Liu,Zhenyu Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:13
标识
DOI:10.1109/tim.2023.3253906
摘要

Regarding increasingly complex scenarios in hand gesture recognition (HGR), it is challenging to implement a reliable HGR due to the non-adaptability of individual sensors to the environment and the discrepancy of personal habits. Multisensor fusion has been deemed an effective way to overcome the limitations of a single sensor. However, there is a lack of research on HGR to effectively establish bridges linking multimodal heterogeneous information. To address this issue, we propose a novel multimodal dynamic HGR method based on a two-branch fusion deformable network with Gram matching. First, a time-synchronized method is designed to preprocess the multimodal data. Second, a two-branch network is proposed to implement gesture classification based on radar-vision fusion. The input convolution is replaced by the deformable convolution to improve the generalization of gesture motion modeling. The long short-term memory (LSTM) unit is utilized to extract the temporal features of dynamic hand gestures. Third, Gram matching is presented as a loss function to mine high-dimensional heterogeneous information and maintain the integrity of radar-vision fusion. The experimental results indicate that the proposed method effectively improves the adaptability of the classifier to complex environments and exhibits satisfactory robustness to multiple subjects. Furthermore, ablation analysis shows that deformable convolution and Gram loss not only provide reliable gesture recognition but also enhance the generalization ability of the proposed methods in different field-of-view scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到,获得积分10
刚刚
Lucas应助Adam采纳,获得10
刚刚
刚刚
脑洞疼应助清风徐来采纳,获得10
刚刚
FXQ123_范发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
张0发布了新的文献求助10
3秒前
3秒前
zyyyyfff完成签到,获得积分10
3秒前
kkk完成签到,获得积分10
3秒前
3秒前
hrpppp发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
5秒前
彭于晏应助啊啾啾采纳,获得20
5秒前
KONG发布了新的文献求助30
5秒前
云翔发布了新的文献求助10
5秒前
曾经二娘发布了新的文献求助10
5秒前
OK发布了新的文献求助10
6秒前
6秒前
bkagyin应助颖火虫采纳,获得10
6秒前
6秒前
6秒前
超级的芷珍完成签到 ,获得积分10
6秒前
FW完成签到,获得积分10
7秒前
7秒前
华仔应助hua采纳,获得10
7秒前
隐形曼青应助乃惜采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
TuZhuling完成签到,获得积分10
9秒前
白金之星发布了新的文献求助10
10秒前
小渔呦呦发布了新的文献求助10
10秒前
Soleil发布了新的文献求助10
10秒前
慕青应助曾经二娘采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726