A Multimodal Dynamic Hand Gesture Recognition Based on Radar–Vision Fusion

计算机科学 稳健性(进化) 手势 人工智能 手势识别 计算机视觉 适应性 传感器融合 语音识别 模式识别(心理学) 生态学 生物化学 生物 基因 化学
作者
Haoming Liu,Zhenyu Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:13
标识
DOI:10.1109/tim.2023.3253906
摘要

Regarding increasingly complex scenarios in hand gesture recognition (HGR), it is challenging to implement a reliable HGR due to the non-adaptability of individual sensors to the environment and the discrepancy of personal habits. Multisensor fusion has been deemed an effective way to overcome the limitations of a single sensor. However, there is a lack of research on HGR to effectively establish bridges linking multimodal heterogeneous information. To address this issue, we propose a novel multimodal dynamic HGR method based on a two-branch fusion deformable network with Gram matching. First, a time-synchronized method is designed to preprocess the multimodal data. Second, a two-branch network is proposed to implement gesture classification based on radar-vision fusion. The input convolution is replaced by the deformable convolution to improve the generalization of gesture motion modeling. The long short-term memory (LSTM) unit is utilized to extract the temporal features of dynamic hand gestures. Third, Gram matching is presented as a loss function to mine high-dimensional heterogeneous information and maintain the integrity of radar-vision fusion. The experimental results indicate that the proposed method effectively improves the adaptability of the classifier to complex environments and exhibits satisfactory robustness to multiple subjects. Furthermore, ablation analysis shows that deformable convolution and Gram loss not only provide reliable gesture recognition but also enhance the generalization ability of the proposed methods in different field-of-view scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包包发布了新的文献求助10
刚刚
刚刚
刚刚
CCcZ完成签到,获得积分10
1秒前
彭于晏应助G浅浅采纳,获得10
1秒前
1秒前
dandan发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
侃侃发布了新的文献求助10
2秒前
啊啊完成签到,获得积分10
2秒前
李爱国应助烂番茄采纳,获得10
2秒前
2秒前
3秒前
如歌完成签到,获得积分20
3秒前
充电宝应助xiaolu采纳,获得10
3秒前
zzz发布了新的文献求助10
3秒前
杀死周一完成签到,获得积分10
3秒前
taff完成签到,获得积分10
4秒前
科研通AI6应助jjj采纳,获得10
4秒前
李倩发布了新的文献求助10
4秒前
4秒前
材料小学生完成签到,获得积分10
4秒前
Lucas应助hhh采纳,获得10
5秒前
852应助ChenYX采纳,获得10
5秒前
慧1111111应助Yuan采纳,获得10
5秒前
dddddd发布了新的文献求助30
5秒前
5秒前
yduan发布了新的文献求助10
6秒前
psq0061发布了新的文献求助10
6秒前
壮壮发布了新的文献求助10
6秒前
6秒前
天天快乐完成签到,获得积分10
6秒前
6秒前
安然完成签到 ,获得积分10
6秒前
王手发布了新的文献求助10
7秒前
无花果应助英俊雪曼采纳,获得10
7秒前
GE发布了新的文献求助30
7秒前
可靠小馒头完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552171
求助须知:如何正确求助?哪些是违规求助? 4636980
关于积分的说明 14646858
捐赠科研通 4578831
什么是DOI,文献DOI怎么找? 2511146
邀请新用户注册赠送积分活动 1486319
关于科研通互助平台的介绍 1457510