Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network

空气质量指数 随机森林 人工神经网络 气象学 环境科学 相关系数 风速 预测建模 反向传播 相关性 统计 数学 机器学习 计算机科学 地理 几何学
作者
Ruifang Liu,Lixia Pang,Yidian Yang,Yuxing Gao,Bei Gao,Feng Liu,Li Wang
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (5): 4531-4531 被引量:3
标识
DOI:10.3390/su15054531
摘要

Under the global warming trend, the diffusion of air pollutants has intensified, causing extremely serious environmental problems. In order to improve the air quality–meteorology correlation model’s prediction accuracy, this work focuses on the management strategy of the environmental ecosystem under the Artificial Intelligence (AI) algorithm and explores the correlation between air quality and meteorology. Xi’an city is selected as an example. Then, the theoretical knowledge is explained for Random Forest (RF), Backpropagation Neural Network (BPNN), and Genetic Algorithm (GA) in AI. Finally, GA is used to optimize and predict the weights and thresholds of the BPNN. Further, a fusion model of RF + BP + GA is proposed to predict the air quality and meteorology correlation. The proposed air quality–meteorology correlation model is applied to forest ecosystem management. Experimental analysis reveals that average temperature positively correlates with Air Quality Index (AQI), while relative humidity and wind speed negatively correlate with AQI. Moreover, the proposed RF + BP + GA model’s prediction error for AQI is not more than 0.32, showing an excellently fitting effect with the actual value. The air-quality prediction effect of the meteorological correlation model using RF is slightly lower than the real measured value. The prediction effect of the BP–GA model is slightly higher than the real measured value. The prediction effect of the air quality–meteorology correlation model combining RF and BP–GA is the closest to the real measured value. It shows that the air quality–meteorology correlation model using the fusion model of RF and BP–GA can predict AQI with the utmost accuracy. This work provides a research reference regarding the AQI value of the correlation model of air quality and meteorology and provides data support for the analysis of air quality problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助酸奶燕麦球采纳,获得10
1秒前
莫失莫忘完成签到,获得积分10
1秒前
1秒前
Kenzonvay完成签到,获得积分10
1秒前
2秒前
mhxu完成签到,获得积分10
2秒前
ferritin完成签到 ,获得积分10
2秒前
guanzhuang完成签到,获得积分10
2秒前
秋山伊夫完成签到,获得积分10
2秒前
LLHH发布了新的文献求助10
2秒前
粗犷的惋清完成签到,获得积分10
3秒前
清秀的煜城完成签到,获得积分10
3秒前
3秒前
cs完成签到,获得积分10
4秒前
dm11完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
hfy完成签到,获得积分10
4秒前
科研通AI5应助可靠的灵珊采纳,获得10
5秒前
TS发布了新的文献求助10
5秒前
QQ完成签到,获得积分10
5秒前
等待的忻完成签到,获得积分10
6秒前
行者完成签到,获得积分10
6秒前
6秒前
火星上如松完成签到,获得积分10
6秒前
asdzsx完成签到,获得积分10
7秒前
7秒前
大乐发布了新的文献求助10
7秒前
7秒前
wuqian完成签到,获得积分10
7秒前
季夏完成签到,获得积分10
8秒前
迷你的隶完成签到,获得积分10
8秒前
Cactus应助麦秋采纳,获得10
8秒前
eagle发布了新的文献求助10
9秒前
9秒前
hua发布了新的文献求助10
10秒前
爱月光完成签到,获得积分10
10秒前
wuqian发布了新的文献求助10
10秒前
bobo完成签到,获得积分10
11秒前
材料小白完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661418
求助须知:如何正确求助?哪些是违规求助? 3222442
关于积分的说明 9745787
捐赠科研通 2932029
什么是DOI,文献DOI怎么找? 1605426
邀请新用户注册赠送积分活动 757898
科研通“疑难数据库(出版商)”最低求助积分说明 734576