已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cloud-Based Advanced Shuffled Frog Leaping Algorithm for Tasks Scheduling

作业车间调度 计算机科学 服务器 云计算 调度(生产过程) 分布式计算 适应度函数 公平份额计划 虚拟机 负载平衡(电力) 两级调度 实时计算 数学优化 操作系统 机器学习 地铁列车时刻表 数学 遗传算法 网格 几何学
作者
Dipesh Kumar,Nirupama Mandal,Yugal Kumar
出处
期刊:Big data [Mary Ann Liebert]
卷期号:12 (2): 110-126
标识
DOI:10.1089/big.2022.0095
摘要

In recent years, the world has seen incremental growth in online activities owing to which the volume of data in cloud servers has also been increasing exponentially. With rapidly increasing data, load on cloud servers has increased in the cloud computing environment. With rapidly evolving technology, various cloud-based systems were developed to enhance the user experience. But, the increased online activities around the globe have also increased data load on the cloud-based systems. To maintain the efficiency and performance of the applications hosted in cloud servers, task scheduling has become very important. The task scheduling process helps in reducing the makespan time and average cost by scheduling the tasks to virtual machines (VMs). The task scheduling depends on assigning tasks to VMs to process the incoming tasks. The task scheduling should follow some algorithm for assigning tasks to VMs. Many researchers have proposed different scheduling algorithms for task scheduling in the cloud computing environment. In this article, an advanced form of the shuffled frog optimization algorithm, which works on the nature and behavior of frogs searching for food, has been proposed. The authors have introduced a new algorithm to shuffle the position of frogs in memeplex to obtain the best result. By using this optimization technique, the cost function of the central processing unit, makespan, and fitness function were calculated. The fitness function is the sum of the budget cost function and the makespan time. The proposed method helps in reducing the makespan time as well as the average cost by scheduling the tasks to VMs effectively. Finally, the performance of the proposed advanced shuffled frog optimization method is compared with existing task scheduling methods such as whale optimization-based scheduler (W-Scheduler), sliced particle swarm optimization (SPSO-SA), inverted ant colony optimization algorithm, and static learning particle swarm optimization (SLPSO-SA) in terms of average cost and metric makespan. Experimentally, it was concluded that the proposed advanced frog optimization algorithm can schedule tasks to the VMs more effectively as compared with other scheduling methods with a makespan of 6, average cost of 4, and fitness of 10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼邪欢完成签到 ,获得积分10
1秒前
YUN发布了新的文献求助30
2秒前
Gigi完成签到,获得积分10
3秒前
5秒前
SciGPT应助hypeboy采纳,获得10
7秒前
7秒前
9秒前
韩55发布了新的文献求助30
10秒前
袁悠悠发布了新的文献求助10
10秒前
思源应助Atropine采纳,获得10
11秒前
huokai发布了新的文献求助10
11秒前
12秒前
Ying完成签到,获得积分10
16秒前
18秒前
19秒前
Atropine发布了新的文献求助10
22秒前
淡水痕发布了新的文献求助10
23秒前
HT-Wang完成签到 ,获得积分10
25秒前
Diky应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
26秒前
31秒前
李健应助傲娇乐巧采纳,获得10
35秒前
简单小土豆完成签到,获得积分10
38秒前
YUN完成签到,获得积分10
42秒前
山月应助简单小土豆采纳,获得20
43秒前
敏感的飞松完成签到 ,获得积分10
43秒前
山月应助tao采纳,获得20
43秒前
rrjl完成签到,获得积分10
55秒前
56秒前
尼可刹米洛贝林完成签到,获得积分10
56秒前
1分钟前
peterlee发布了新的文献求助10
1分钟前
半夏完成签到 ,获得积分10
1分钟前
1分钟前
peterlee完成签到,获得积分10
1分钟前
华仔应助韩55采纳,获得10
1分钟前
李李完成签到 ,获得积分10
1分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434723
求助须知:如何正确求助?哪些是违规求助? 3032027
关于积分的说明 8944101
捐赠科研通 2719998
什么是DOI,文献DOI怎么找? 1492076
科研通“疑难数据库(出版商)”最低求助积分说明 689642
邀请新用户注册赠送积分活动 685760